首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
垂直线电流源的三维电阻率成像   总被引:5,自引:0,他引:5  
在油井注水和深井注浆的电法监测中,地表布设平面的电位测量网,而将钻井的钢套管作为线电流源来供电,据此可确定流体的运动方向和分布特征.数据处理中需解决垂直线电流源的三维电阻率反演.本文叙述了相应的反演理论和偏导数计算方法.在某油田的试验中,以生产井为电极圈的中心,每圈均匀布设18个电极,共6圈,在地表得到了108个电位数据,获得500~2 000m之间5个不同深度层的真电阻率分布图像,并对深度层为1 500~1 600m的图像进行了初步解释.结果表明,该方法可以对井下某深度层中的流体运动和分布可进行有效的监测.  相似文献   

2.
任意形状线电流源三维地电场研究   总被引:2,自引:8,他引:2       下载免费PDF全文
利用套管供电,通过地表观测视电阻率研究油田注水分布和剩余油分布近来在油田开发中得到了应用.由于现在的油井和水井有很多是倾斜的,因此,研究倾斜线电流源三维地电场是必要的.本文针对任意形状线电流源,从异常电位所满足的微分方程出发,利用有限差分方法实现了任意形状线电流源三维地电场正演.正演结果表明相同模型使用倾斜线源和直线源其地表响应有较大的差别,实际应用中不能将井斜较大的井当作垂直线源,而应以倾斜线源处理.  相似文献   

3.
井地电阻率成像法利用井套管作电流源向井下供入大功率直流电流,在地表测量由地下介质的电性变化形成的电位分布,通过反演可得到地下介质的电阻率分布.针对大斜度井和水平井开展井地三维电阻率数值模拟和反演研究,对油田注水及压裂效果监测具有重要意义.基于井地电阻率成像法原理,采用有限差分法和不完全切勒斯基共轭梯度法进行了三维正演模拟,研究了大斜度井和水平井的井地电位响应特征.提出了采用层状约束阻尼最小二乘法由浅到深地进行大斜度井和水平井的多层联合反演,并对实际水平井井地电位各个层段数据进行了三维反演.模拟结果表明,倾斜线源和水平线源会对地面电位响应产生明显影响,在反演中需要考虑线源形态.实际水平井井地电位反演成像表明,考虑倾斜线源或者水平线源的联合反演得到了准确的水平井三维注水层成像图,得出注水层的真电阻率分布,能够判断注水运移方向.  相似文献   

4.
The recent use of marine electromagnetic technology for exploration geophysics has primarily focused on applying the controlled source electromagnetic method for hydrocarbon mapping. However, this technology also has potential for structural mapping applications, particularly when the relative higher frequency controlled source electromagnetic data are combined with the lower frequencies of naturally occurring magnetotelluric data. This paper reports on an extensive test using data from 84 marine controlled source electromagnetic and magnetotelluric stations for imaging volcanic sections and underlying sediments on a 128‐km‐long profile. The profile extends across the trough between the Faroe and Shetland Islands in the North Sea. Here, we focus on how 2.5D inversion can best recover the volcanic and sedimentary sections. A synthetic test carried out with 3D anisotropic model responses shows that vertically transverse isotropy 2.5D inversion using controlled source electromagnetic and magnetotelluric data provides the most accurate prediction of the resistivity in both volcanic and sedimentary sections. We find the 2.5D inversion works well despite moderate 3D structure in the synthetic model. Triaxial inversion using the combination of controlled source electromagnetic and magnetotelluric data provided a constant resistivity contour that most closely matched the true base of the volcanic flows. For the field survey data, triaxial inversion of controlled source electromagnetic and magnetotelluric data provides the best overall tie to well logs with vertically transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data a close second. Vertical transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data provided the best interpreted base of the volcanic horizon when compared with our best seismic interpretation. The structural boundaries estimated by the 20‐Ω·m contour of the vertical resistivity obtained by vertical transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data gives a maximum geometric location error of 11% with a mean error of 1.2% compared with the interpreted base of the volcanic horizon. Both the model study and field data interpretation indicate that marine electromagnetic technology has the potential to discriminate between low‐resistivity prospective siliciclastic sediments and higher resistivity non‐prospective volcaniclastic sediments beneath the volcanic section.  相似文献   

5.
Conventional electrical prospecting can be extended to the search for deep-seated hydrocarbon deposits, by using the steel casings of drill-holes as vertical line sources. These sources produce at depth a density of current higher than the density created by point sources located at the ground surface. Several tests have shown that the contrast of conductivity between resistive hydrocarbon deposits and the surrounding salt water produces relevant anomalies on a resistivity map obtained with vertical line sources, especially where there exists a superficial masking effect caused by a highly resistive layer. In a survey carried out in the USSR, combined measurements were performed, both with line source and with surface point sources. The detected residual resistivity anomaly roughly delineates the contours of the known hydrocarbon deposit.  相似文献   

6.
罗鸣  李予国  李刚 《地球物理学报》2016,59(11):4349-4359
本文提出了一维垂直各向异性(VTI)介质倾斜偶极源频率域海洋可控源电磁(CSEM)资料高斯-牛顿反演方法.在电阻率各向异性介质水平偶极源和垂直偶极源海洋CSEM正演算法的基础上,利用欧拉旋转方法,实现了各向异性介质倾斜偶极源海洋CSEM正演算法.海洋可控源电磁场关于地下介质横向电阻率(ρ_h)和垂向电阻率(ρ_v)的偏导数(即灵敏度矩阵)是解析计算的,结合垂直各向异性介质横向电阻率与垂向电阻率的关系,将各向异性率融入到正则化因子选择中,实现了正则化因子的自适应选择.理论模型合成数据和实测资料反演算例表明,我们提出的反演方法能够较准确的重构海底围岩和基岩的各向异性电阻率以及高阻薄层的埋藏深度、厚度和垂向电阻率.  相似文献   

7.
Electrical imaging provides important subsurface information for the construction of hypervelocity impact models. We here provide an overview and evaluation of the current electrical imaging methods used in impact cratering studies. Although apparent resistivity models are commonly used in the geoelectrical imaging of impact structures, the reliability of these models has not hitherto been determined. In order to assess these imaging approaches in impact cratering, we investigate for the first time the discrepancies between the apparent resistivity and true resistivity models of an impact structure. To this end, we present (1) a new true resistivity model of the Araguainha impact structure in central Brazil by applying L2-norm inversion to previously published data, (2) apparent resistivity model of the impact structure, and (3) models obtained from different stages of the iterative tomographic inversions. Our results show that changes in vertical resistivity gradient are significantly better defined in the true resistivity models than in the apparent resistivity model. On the basis of these results, we outline a new approach that true resistivity models can be effectively assessed by applying both L1- and L2-norm inversion schemes together with the monitoring of intermediate models from iterative inversion. The results of our study highlight the importance of tomographic inversion of resistivity data in impact cratering studies, and they provide a data modeling framework and foundation for cost-effective subsurface imaging of impact structures in the future.  相似文献   

8.
过套管电阻率测井是通过测量套管壁电势实现测量地层的视电阻率,基于传输线方程理论,针对层状地层,给出了套管壁电势、电流对地层横向电阻导数的微分方程(称Jacobi矩阵微分方程)及边界条件;利用Jacobi矩阵微分方程边值问题导出了过套管电阻率测井反演地层参数的Jacobi矩阵系数的解析表示,利用Marquardt方法实现了过套管测井的地层电阻率反演;通过计算对Jacobi矩阵的特性进行了探讨,并获得了较快的计算速度(因为Jacobi矩阵是用解析解表示的),反演结果与地层模型取得了较好的逼近.本文实现了过套管电阻率测井地层参数的Jacobi系数矩阵的快速计算及地层电阻率反演,为进一步开展电阻率测井数据处理提供了理论依据和快速反演算法.  相似文献   

9.
直流电阻率法以其对含水构造响应敏感且适应性强的特点,是隧道施工期超前地质预报的常用方法.针对目前定点源三极观测方式易受到测线附近旁侧异常干扰与聚焦观测方式探测距离过短无法三维成像的问题,提出了一种基于多同性源阵列电阻率的隧道超前探测新方法,利用环形布置的多同性源供电压制隧道掌子面后方的异常体的干扰,同时增强掌子面前方远处异常体的敏感度,阵列电极测量可为含水构造的三维反演成像提供三维数据.首先,开展了含水构造超前探测的数值正演模拟,发现多同性源方法的视电阻率纵向微分曲线极小值以及与横轴的交点位置可对异常体位置进行定性判断,探讨了多同性源方法对后方及侧向异常干扰的响应特征及识别方法.其次,将电阻率光滑约束与轨迹光滑策略引入蚁群反演算法,提出了一种最小二乘方法与改进蚁群算法相结合的混合反演算法,反演数值算例表明混合反演算法能够实现含水构造的三维成像,较好地反演出不同距离的含水构造位置,并使其边界较为清晰.为了验证多同性源探测方法的探测效果开展了物理模型试验,多同性源阵列电阻率法能较好的反映含水构造的存在,与实际含水构造的位置较为相符.  相似文献   

10.
The applicability of three kinds of electrode configurations used to delineate a buried horizontal pipe was studied. A 3D resistivity imaging survey was carried out along eight parallel lines using pole-pole, pole-dipole, and dipole-dipole arrays with 1m minimum electrode spacings. Roll-along measurements were carried out to cover a rectangular grid. The 2D and 3D least squares algorithms based on the robust inversion method were used in the inversion of the apparent resistivity data sets. The 2D inversion of data sets could not delineate the orientation and dimension of the subsurface anomalies clearly. To obtain more accurate results, a 3D joint inversion of the pole-pole and pole-dipole data sets was performed, as well as of pole-pole and dipole-dipole data sets. In this case, both horizontal and vertical dimensions of subsurface structures were resolved. The resulting model obtained from each array was compared to those of joint inversion method. The result showed that the horizontal resolution does not improve so much as that in the vertical direction when joint inversion is applied.  相似文献   

11.
To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.  相似文献   

12.
Mapping deep geological hydrocarbon targets is of significant importance in basin exploration. In areas lacking reliable seismic data, magnetotelluric (MT) and gravity explorations are helpful to delineate the distribution of potential deep geological hydrocarbon targets. Here we investigate the effectiveness of the integrated 3D MT and gravity explorations for mapping the potential deep hydrocarbon source rocks. The result based on the data from the W Basin (part of the Ordes Basin) of China demonstrates that the method is efficient and economical for basin exploration. The method is particularly useful in target areas which are of great interest for oil and gas exploration but lack high quality seismic data. In our method, we first use the high-precision 3D small-bin MT data acquisition to improve the data accuracy. Then we perform datum static correction method and apply 3D inversion to obtain the3D resistivity distribution. We also develop a layered resistivity model based on resistivity logging to assist the interpretation of the inverted 3D resistivity data so as to derive an initial 3D geological model. Starting from the initial model, we use 2D gravity data to update the model via 2D inversion line by line, and then pass the updated model for the next round of the 3D MT inversion. The integrated inversion is implemented iteratively so the model converges to satisfy the need of final geological analysis. The application to the W Basin shows that we could successfully delineate the geological distribution of the potential deep hydrocarbon source rocks within the basin and map the thickness of the upper Paleozoic.  相似文献   

13.
A 3D electrical resistivity imaging survey is presented in this paper. The objective was to investigate an underground wastewater system at the University of Malaya, Malaysia. Apparent resistivity data were collected along ten parallel lines using a Wenner-Schlumberger configuration; electrode cables were oriented in the x-direction with 3 m spacing. Roll-along measurements using a line spacing of 3 m were carried out covering a grid of 20 × 10 electrodes. All data sets were merged into a single data file in order to perform a 3D inversion. Two different 3D least squares algorithms, based on the robust inversion method and the smoothness-constrained technique, were used for the inversion of the apparent resistivity data. Both the horizontal and vertical extents of the anomalous zones found by inversion are displayed. The results indicate the superiority of the robust inversion method over the smoothness-constrained technique at this site. The results are in sufficient accordance with previously known information about the investigation area. The results show that 3D electrical resistivity imaging surveys, in combination with an appropriate 3D inversion method, can be highly useful for engineering and archaeological investigations as well as for environmental applications.  相似文献   

14.
地磁测深研究的周期范围通常为10~5~10~7s,缺少反映浅部电性结构的短周期信息,而C-响应受浅部电阻率影响明显,因此本文提出在反演中增加浅部(约200 km)电阻率约束以提高深部反演的稳定性和可靠性.在磁层环状电流满足P_1~0假设的条件下,球坐标系中一维导电薄球层状地球的C-响应和电导率分布关系由边界条件通过递推的方法计算得到.反演采用有限内存拟牛顿(L-BFGS)法;浅部电阻率约束通过将目标函数对模型参数的梯度设为零来实现;通过置信区间分析评价约束反演结果的可靠性.合成数据的无约束反演虽然最终的拟合效果很好,但浅部电阻率受初始模型影响,差异较大;采用浅部约束后,反演结果对初始模型依赖性明显减小,同时还能显著提高200~600 km范围内反演结果的准确性.对全球近地轨道卫星观测的C-响应数据约束反演后结果与前人一致,表现为地幔电导率整体上随着深度的增加而增加.参数置信区间分析表明,由于约束反演加入了浅部信息,电阻率的变化范围更加紧致,说明反演结果更加可靠.因此,有必要通过其他地球物理方法,如长周期大地电磁测深等获得浅部电阻率分布,作为先验信息参加反演,进行浅部约束的C-响应反演,获得更可靠的一维全深度电性结构,为地磁测深数据解释奠定基础.  相似文献   

15.
双侧向型复电阻率测井响应的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
《地震地质》2005,27(3):412-419
在二维地层模型条件下,应用有限元方法模拟了双侧向模式的复电阻率测井仪器在不同频率下的响应,结果表明当频率很低时,复电阻率测井的响应接近双侧向测井的响应;随着频率的提高,复电阻率测井的响应幅度降低。当地层具有一定的频散效应时,可以利用不同频率下的复电阻率测井响应直观地区分油水层  相似文献   

16.
杨韦 《地震地质》2003,25(2):274-279
实际地层可能出现 2种电阻率的宏观各向异性 :微观的统计平均效应和裂缝走向等因素的构造效应。三分量感应测井方法可能是确定地层电阻率各向异性的最好方法 ,但是 ,该仪器目前在中国还没有应用。已有的数据一般是梯度和双感应曲线 ,梯度和双感应曲线单独使用都难以揭示各向异性 ,但是 ,将二者联合使用则有可能。在反演模型中考虑了电阻率各向异性的存在 ,给出了梯度和双感应曲线联合求地层电阻率各向异性的方法。通过直井水平层的二维人工模型表明 ,用感应方法可确定地层的水平电阻率和厚度。而梯度方法的视电阻率可以近似看作水平电阻率和纵向电阻率的几何平均值 ,梯度方法的视厚度是各向异性参数和真实厚度的乘积。因而不能用梯度方法单独确定各向异性参数和真实厚度 2个参数中的任何 1个。然而 ,联合梯度和双感应的方法则可能确定 3个参数 :各向异性参数 ,水平电阻率和地层厚度。人工数据的例子表明了这种联合的可行性  相似文献   

17.
The controlled‐source electromagnetic (CSEM) and magnetotelluric method (MT) are two techniques that can be jointly used to explore the resistivity structure of the earth. Such methods have, in recent years, been applied in marine environments to the exploration and appraisal of hydrocarbons. In many situations the electric properties of the earth are anisotropic, with differences between resistivity in the vertical direction typically much higher than those in the horizontal direction. In cases such as this, the two modes of the time‐harmonic electromagnetic field are altered in different ways, implying that the sensitivity to the earth resistivity may vary significantly from one particular resistivity component (scalar, horizontal or vertical) to another, depending on the measurement configuration (range, azimuth, frequency or water depth). In this paper, we examine the sensitivity of the electromagnetic field to a vertically anisotropic earth for a typical set of configurations, compare inversion results of synthetic data characterizing a vertically anisotropic earth obtained using the isotropic and anisotropic assumptions and show that correctly accounting for anisotropy can prevent artefacts in inversion results.  相似文献   

18.
Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low-resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.  相似文献   

19.
为更好地处理与解释复杂海底地形条件下测得的海洋可控源电磁数据,本文提出了一种基于非结构网格剖分的频率域海洋可控源电磁数据三维正则化反演方法.该方法首先对海洋地电模型以非结构四面体单元进行离散,然后基于矢量有限元方法获得海洋可控源电磁响应和灵敏度信息,最后采用共轭梯度法求解高斯-牛顿反演方程计算模型修正量.为提高反演的稳定性,通过在反演过程中采用对数转换方法实现反演模型参数的上下限约束.本文分别测试了单测线水平海底地形反演算例和面积性测量的起伏海底地形反演算例.反演结果表明,本文提出的频率域海洋可控源电磁三维反演能够准确地恢复高阻储油层的位置和电阻率信息,且计算效率较高,可用于实测海洋电磁资料的处理与解释.  相似文献   

20.
Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach of direct current resistivity and gravity data. The algorithm uses fuzzy c-means clustering to determine the petrophysical relationship between density and resistivity to obtain the similarity. Synthetic data set has demonstrated that the cooperative inversion approach can produce more reliable and better resistivity and density models of the subsurface as compared to those obtained through individual inversions. To utilize the presented cooperative inversion algorithm, the number of geologic units (number of clusters) in the study region must be known a priori. As a field study, the cooperative inversion approach was used to identify the extension of uranium-bearing target rock around the Beldih open cast mine. We noted the inconsistencies in both resistivity and density models obtained from the individual inversions. However, the presented cooperative inversion approach was able to produce similar resistivity and density models while maintaining the same error level of the respective individual inversions. We have considered four geologic units in the presented cooperative inversion as a field case study. We have also compared our cooperative results with drilled borehole and found to be a reliable tool to differentiate between the target rocks (kaolinite and quartz–magnetite–apatite rocks) and the ultramafic rock (host rock quartzite/alkaline granite). However, this study is subject to certain limitations such as the inability to differentiate between closely spaced kaolinite and quartz–magnetite–apatite rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号