首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the natural hydrology behaviors were greatly influenced by climate change. The relation between runoff and climate change are always the core of scientific hydrological study in arid region. This paper presents a multi-variate time series controlled auto-regressive (CAR) model based on hydrological and climatic data of typical tributaries Jinghe River in Ebinur Lake Basin of Xinjiang covering the period from 1957 to 2012. The aim is to study the climate change and its effects on runoff of the Jinghe River, Northwest China. The results showed the following: the runoff of the Jinghe River was unevenly distributed and has obvious seasonal changes throughout the year. It was concentrated in summer and has along dry season with less runoff. The monthly maximum river runoff was from June to September and accounted for 74% of annual runoff. The river runoff increased since the 1980s till the 1990s; in the 21st century there was a trend of decreasing. The oscillatory period of annual runoff series in the Jinghe River Basin was 21a and 13a, and these periods were more obvious, followed by 32a and 9a. The oscillation with a time scale of 21a and 13a was a fulltimed domain. The MRE is 6.54%, the MAE is 0.84 × 108 m3, and the RMSE is 0.039. The CAR model passed the F-test and residual test, and the change trend of calculated and measured values of annual runoff is consistence, which means that the model was reasonable.  相似文献   

2.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
采用2015年艾比湖流域54个采样点的10个地表水水质指标数据,首先利用水质指数模型(WQI)和地统计学方法对流域水质污染情况进行全局评价,然后利用层次聚类法、判别分析法和因子分析法分析艾比湖流域地表水丰水期和枯水期水质分异特征.在水质时空分异特征研究的基础上,利用主成分回归分析法对艾比湖流域水质进行污染源解析.结果表明:艾比湖流域丰水期WQI值介于38~70之间,枯水期WQI值介于31~71之间,艾比湖流域丰水期的地表水水质污染情况比枯水期严重,而艾比湖、博尔塔拉河和精河靠近艾比湖湖区的河道污染程度均比其他河道严重.由聚类分析和判别分析得出艾比湖流域丰水期和枯水期的水质采样点在空间上均被分成A、B两组,A组包括艾比湖湖区西部、奎屯河、古尔图河和四棵树河,B组包括艾比湖湖区东部、精河和博尔塔拉河.艾比湖流域丰水期和枯水期的水体主要受到化学需氧量、溶解氧、氨氮和悬浮物浓度等指标的影响,B组水质污染指标的值相比于A组的值偏高,B组区域内存在高污染企业,艾比湖流域水环境治理工作需主要集中在B组所包括的艾比湖湖区、博尔塔拉河和精河.(4)艾比湖湖区、精河和博尔塔拉河地表水体的污染主要来自于有机物污染和营养物质污染,其次为工矿业污染;而奎屯河、古尔图河、四棵树河地表水体的污染主要来自于有机物污染,其次为营养物质污染,生物污染的影响较为微弱.该研究结果可为艾比湖流域地表水水环境改善和治理提供一定参考.  相似文献   

4.
It is important to identify the non-stationarity in the relation between runoff and sediment load under the backdrop of the changing environment. This relation helps to further understand the mechanisms of runoff and sediment yield. A copula-based method was used to detect possible change points in the relation between runoff and sediment load in the Wei River Basin (WRB), China, where soil erosion is a very severe issue. The modified Mann-Kendall trend test method was applied to obtain the trends of runoff and sediment load spanning 1960–2010 at monthly and annual timescales. Finally, the causes of the identified non-stationarity of the relation between runoff and sediment load were roughly analyzed from the perspective of climate change and human activities. Results indicated that:(1) the runoff and sediment load in the Jinghe and Wei rivers were generally characterized by noticeably decreasing trends at both monthly and annual timescales;(2) both the Jinghe and Wei rivers had a common change point (2002), implying that the stationarity of the relation between runoff and sediment load in the Jinghe and Wei River was invalid; (3) human activities including increasing water consumption and growing application of soil conservation practices are dominant factors resulting in non-stationarity in the rela-tion between runoff and sediment load in the WRB. This study provides a new idea for identifying the non-stationarity of multivariate relation in the hydro-meteorological field under the background of the changing environment.  相似文献   

5.
An analysis of the variation characteristics and evolutionary trends in the runoff of five rivers in the Poyang Lake Basin was conducted using the MK trend test, Morlet wavelet transforms, correlation analyses, and other methods. For 1956–2011, the inflow runoff displays small, statistically insignificant trends. However, for 2000–2011, significant downward trends are present. River runoff in the basin is significantly correlated with precipitation, while water intake and use is less influential; the most significant impact on river runoff is climate variability. To analyse the effects of water conservancy project scheduling and operation, we also compare the inflow and outflow runoff processes of typical large reservoirs before and after peak reservoir construction. The scheduling and operation of large reservoirs in the five rivers is known to play a supplementary role in dry season inflow runoff. The recent reduction in inflow runoff was mainly caused by basin precipitation; reasonable scheduling of water conservancy projects in the five rivers plays a positive role in safeguarding the water required by the dry season ecosystem in Poyang Lake.  相似文献   

6.
Remote-sensing images of Ebinur Lake Basin including six years (1960, 1972, 1990, 2000, 2005 and 2010) were interpreted through RS and GIS. Land use changes in Ebinur Lake Basin during the past five decades were analyzed according to interpretation results. On this basis, effect of land use changes on hydrology and water resources was analyzed. Results show that the land use pattern in Ebinur Lake Basin changed greatly from 1960 to 2010. Cultivated Land and Urban-Rural Construction Land increased, while other landuse types decreased. Most areas were Unused Land. Generally, oasis expanded continuously, but oasis in Ganjiahu Zone at downstream of the Kuitun River Basin reduced to some extent. Runoff of the Kuitun River and Jinghe River increased gradually, but runoff of the Bortala River reduced continuously. Both inflows and lake area declined year by year. The groundwater level dropped significantly and water deteriorated continuously. Due to the decelerating wind blowing, evaporation in the basin reduced accordingly. Hydrology and water resources changes in Ebinur Lake Basin in past five decades were mainly caused by continuous expansion of Cultivated Land and oasis, continuous population growth and hydraulic engineering constructions. However, oasis expansion shall be limited within the carrying capacity of water resources. To maintain ecological security in the basin, it is necessary to determine reasonable oasis area, optimize river system structure, and improve utilization efficiency of water resources.  相似文献   

7.
Understanding the mechanisms of river runoff variation is important for the effective management of water resources in arid and semi‐arid regions. This study uses long‐term observational data as a basis for examining the effects of human activities and climate change on the runoff variation of Jinghe River Basin, a typical arid inland basin in northwest China. A distributed hydrological model called the Soil and Water Assessment Tool, combined with a sequential cluster method and a separation approach, was used to quantify and distinguish the effects of human activities and climate change on runoff. The hydrological sequence before 1981 can be considered natural. However, human activities have significantly affected runoff since 1981. The runoff reduction caused by human activities between 1981 and 2008 accounted for 85.7% of the total reduction in the downstream of Jinghe River, whereas that caused by climatic variation was only 14.3%. This observation suggests that human activities are the major driver of runoff variation in the basin. Although the role of climate change in driving runoff variation has been identified to be prevalent and dominant in arid regions, this study highlights the importance of human activities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

9.
艾比湖流域2008年丰水期水环境质量现状评价   总被引:8,自引:2,他引:6  
弥艳  常顺利  师庆东  高翔  黄聪 《湖泊科学》2009,21(6):891-894
在断面类别比例法的基础上采用内梅罗综合污染指数法分别评价新疆艾比湖流域2008年丰水期地表水和底泥的污染程度.评价结果显示:总氮、总磷、氨氮基本超标;其中博尔塔拉河污染物超标最严重,总磷超标14.1倍,总氮超标10.1倍.艾比湖流域水质及底泥实际监测类别中Ⅰ-Ⅲ类比例为30%.劣Ⅴ类比例为30%.因此,艾比湖流域丰水期水质中度污染.  相似文献   

10.
《水文科学杂志》2012,57(2):227-241
ABSTRACT

The study addresses homogeneity testing of annual discharge time series for eight hydrological stations and five annual climate time series for one weather station in the Kupa River Basin, between Slovenia and Croatia, and global annual average surface temperature time series for the period 1961–2010. The standard normal homogeneity test (SNHT) was used to detect both abrupt and gradual linear trend homogeneity breaks. The results reveal natural change points at the beginning of the 1980s. Absolute homogeneity testing of average annual weather station-level air pressure, annual precipitation, differences between precipitation totals and potential evapotranspiration and surface runoff from the independent observation time series confirmed an abrupt shift, also at the beginning of the 1980s. The trend of local air temperature for 1985–2000, which partly coincides with global surface temperature trend for 1974–2005, strengthened the river discharge regime shift since the beginning of the 1980s. These results could improve climate variation monitoring and estimation of the impact of climate variation on the environment in the area. Generally, an indication of climate regime change points and an assessment of their duration could provide significant benefits for the society.  相似文献   

11.
基于鄱阳湖流域五河水文站1960-2013年逐日径流量和14个国家级气象站的日气象数据,本文利用长短记忆模型框架构建神经网络模型来开展鄱阳湖流域的径流过程模拟,结合生态赤字与生态盈余等生态径流指标,定量分析了鄱阳湖流域的水文变异特征.同时,利用差异化的情景模拟方式,定量区分了人类活动和气候变化对鄱阳湖流域生态径流变化的...  相似文献   

12.
The hydroclimatology of prairie‐dominated portions of the Lake Winnipeg watershed was investigated to determine the possible presence of trends and shifts in variables that may influence the streamflow regimes and water quality of Lake Winnipeg. The total annual streamflow, precipitation, runoff ratio and daily maximum streamflow in the two major tributaries of the Assiniboine River and Red River were analysed for a range of nonstationary behaviours. Each of these rivers has been gauged for more than 90 years. The methods used included a nonparametric Mann–Kendall test modified to account for diverse memory properties (i.e. short term versus long term) and a Bayesian change point detection model to identify possible segments of time series with inconsistent nonstationary behaviour. Although there is no evidence of statistically significant trends in precipitation and streamflow in the Assiniboine River watershed, a shift‐type nonstationarity in annual runoff and runoff ratio was observed in this area, which is manifested in the form of a sequence of wet and dry spells during the last century. Precipitation and runoff metrics in the American portion of the study area (i.e. Red River watershed) were characterised with both gradual and abrupt changes with an extremely increasing rate of streamflow beyond that of intensified precipitation. The nonproportional watershed runoff response is attributed to the dynamic nature of contributing areas that, together with the semiarid climate, leads to sudden changes of streamflow due to major or even some times minor changes in climate inputs. It is evident that streamflow in the depression‐dominated landscapes of the semiarid glaciated plains of North America is particularly sensitive and vulnerable to minor climate variability and change. This study provides valuable insights into the highly complex precipitation–runoff relationship in depression‐dominated landscapes and could have important implications for water management in this part of North America and comparable regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Changes in climate and land use can significantly influence the hydrological cycle and hence affect water resources. Understanding the impacts of climate and land‐use changes on streamflow can facilitate development of sustainable water resources strategies. This study investigates the flow variation of the Zamu River, an inland river in the arid area of northwest China, using the Soil and Water Assessment Tool distributed hydrological model. Three different land‐use and climate‐change scenarios were considered on the basis of measured climate data and land‐use cover, and then these data were input into the hydrological model. Based on the sensitivity analysis, model calibration and verification, the hydrological response to different land‐use and climate‐change scenarios was simulated. The results indicate that the runoff varied with different land‐use type, and the runoff of the mountain reaches of the catchment increased when grassland area increased and forestland decreased. The simulated runoff increased with increased precipitation, but the mean temperature increase decreased the runoff under the same precipitation condition. Application of grey correlation analysis showed that precipitation and temperature play a critical role in the runoff of the Zamu River basin. Sensitivity analysis of runoff to precipitation and temperature by considering the 1990s land use and climate conditions was also undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Characteristics of annual runoff variation in major rivers of China   总被引:1,自引:0,他引:1  
The statistical properties of annual runoff in major rivers of China are studied based on the theory of stochastic process and technology of time series analysis. These properties include the characteristics of intra‐annual and inter‐annual variations of runoff, trends, abrupt changes and periodicities. The new findings from the intensive calculations and appropriate analysis of data in longer period are as follows: (i) compared with the nonuniformity of intra‐annual runoff before 1980, the nonuniformity of intra‐annual runoff in China generally decreased after 1980, except for Huaihe River and Songhua River; (ii) compared with the annual runoff before 1980, the annual runoff in China generally decreased after 1980 except for WangJiaba station in Huaihe River and Ha‐Erbin station in Songhua River; the frequency of continuous low flow and continuous high flow in Haihe River and the downstream of Yellow River is higher than those in other rivers in China; (iii) annual runoff shows a downward trend in major rivers of China especially in Haihe River, Liao River and the midstream and downstream of Yellow River; (iv) there exist certain abrupt changes of annual runoff in major rivers of China; the abrupt change‐points are different among different river basins; and (v) almost periodicities of annual runoff sequences in major rivers of China are generally 20 years below, that is, 3~7 and 12~20 years. The reasons for these changes are mainly caused by climate change and human activities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
随着气候变化和人类活动的加剧,城市化地区水文过程受到较大影响,极端水文事件发生频率显著加大,探究城市化地区洪水演变和驱动机理对于防洪减灾具有重大意义。本文以长江下游快速城市化地区的秦淮河流域为例,分析了1987—2018年期间该流域年最大日径流的演变特征,构建多元线性回归模型和广义可加GAMLSS模型识别了关键驱动因子并量化其贡献作用。结果表明:(1)城市化背景下秦淮河流域年最大日径流呈现显著上升趋势,平均增长速率为14.77 m3/(s·a),并于2001年发生显著突变。(2)汛期降水量和不透水面率是年最大日径流变化的关键驱动因素,最优模型显示前者贡献率超过了70%,表明了降水改变的决定性作用,而不透水面率贡献率超过20%则表明了下垫面的改变对年最大日径流演变存在显著影响。(3)不透水面的增加对年最大日径流和汛期降水量响应关系的影响程度从突变前的6.7%增加到突变后的10.4%,快速城市化已显著改变了流域降水-径流响应过程。研究表明,随着城市发展秦淮河流域的年最大日径流受到人类活动显著影响,洪涝威胁日趋增大,研究结果可为城市化地区防洪减灾提供一定参考。  相似文献   

16.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
以艾比湖流域主要入湖河流为研究对象,在5月(丰水期)和8月(枯水期)分别沿博尔塔拉河(博河)和精河进行采样,采用平行因子模型(PARAFAC)和三维荧光区域积分法对水体三维荧光特性进行研究并对其与水质的关系在枯、丰水期下的变化进行探讨.结果表明①河流DOM在枯水期与丰水期都含有C1(240、425 nm) UVC类腐殖质,C2(225、290 nm)紫外区内络氨酸类有机物,C3(230/280、330 nm)蛋白类有机物,C4(265、260 nm)腐殖质类共4种组分.通过对水体三维荧光进行区域积分可以看出DOM荧光成分的占比在不同时期的变化.博河在枯水期时EEM光谱中的区域Ⅲ富里酸含量低于丰水期,枯水期时区域Ⅱ芳香类蛋白质、区域Ⅳ可溶性微生物代谢物以及区域Ⅴ类腐殖质酸高于丰水期;对于精河来说,区域Ⅱ芳香类蛋白质和区域Ⅳ可溶性微生物代谢物在枯水期的含量高于丰水期,区域Ⅲ富里酸和区域Ⅴ类腐殖质酸的含量枯水期低于丰水期,这表明水体腐质化程度较高.②本研究选取了一些常规的荧光指数来描述枯、丰水期水体的荧光指数特性.经研究发现,精河的荧光指数、自生源指数和腐殖化指数在不同时期的变化幅度较小,而博河的变化幅度较大.③将荧光指数与水质参数进行相关性分析并建模,结果表明枯水期自生源指数(BIX)与化学需氧量呈显著正相关,相关系数R=0.688;丰水期时BIX与铵态氮浓度呈显著负相关,相关系数R=-0.493.通过对比分析艾比湖主要入湖河流的三维荧光光谱特性与水质在枯、丰水期时的关系进一步表明水体中DOM的特性以及在枯、丰水期下的差异,为艾比湖流域的治理改善提供一定的理论支持和参考依据.  相似文献   

18.
It is a challenge to properly generalize hydrological characteristics under the great heterogeneity of climate and landscape conditions across space because the linkage and interaction among hydro-climate–landscape factors are complicate and ambiguous at regional scale. In this study, multivariate statistical analyses including clustering, correlation and regression analysis were combined with Budyko and L’vovich frameworks to regionalize runoff characteristics over Jinghe River Basin of northwest China. For all 23 sub-basins, the hydrologic factors were quantified using the metrics of mean annual values and intra-annual variability of runoff. The climatic factors are determined from precipitation, potential evapotranspiration and aridity index, and the landscape factors were extracted from topography, soils and vegetation of the sub-basins. Results illustrated that the 23 sub-basins can be classified into two groups, the dry Loess Plateau (LP) and the wet Mountain Region (MR) in the study basin. The runoff metrics of sub-basins in each group present similarity in spatial distribution, intra-annual variations and the dominant influence factors of climate and landscape. But such runoff metrics characteristics and their co-dependence are significantly different between the two clustered sub-basins. Higher runoff and gentler hydrographs were observed in the MR in response to wetter and greater intra-annual variability in climate and greater spatial variability in landscape, whereas lower runoff and sharper hydrograph were seen in response to drier and greater intra-annual variability in climate, and less spatial variability in landscape in the LP. The runoff spatial distribution is more sensitive to climate spatial variation than to landscape in LP as opposed to the MR. Among the landscape factors, forest distribution is the dominant control on the spatial runoff characteristics in LP whereas topography is principal factor in MR. Our results highlight that current measures of reforestation plus marked change in climate in the Loess Plateau could lead to significant change in streamflow.  相似文献   

19.
Yonghui Yang  Fei Tian   《Journal of Hydrology》2009,374(3-4):373-383
Runoff in Haihe River Catchment of China is steadily declining due to climate change and human activity. Determining abrupt changes in runoff could enhance identification of the main driving factors for the sudden changes. In this study, the sequential Mann–Kendall test analysis is used to determine abrupt changes in runoff in eight sub-catchments of Haihe River Catchment, while trend analysis via the traditional Mann–Kendall test for the period 1960–1999 is used to identify the basic trend of precipitation and runoff. The results suggest an insignificant change in precipitation and a significant decline in runoff in five of the eight sub-catchments. For most of the sub-catchments, abrupt changes in runoff occurred in 1978–1985. Through correlation comparisons for precipitation and runoff for the periods prior to and after abrupt runoff changes, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. It is also noted that abrupt decline in runoff was actually at the beginning of China’s 1978–1985 land reform. Given that the land reform motivated farmers to productively manage their reallocated lands, agricultural water use therefore increased. Hence percent agricultural land is analyzed in relation to land use/cover pattern for the late 1970s and early 1980s. The analysis shows that when cultivated farmland exceeds 25% of a sub-catchment area, an abrupt decline in runoff occurs. It is therefore concluded that high percent agricultural land and related agricultural water use are the most probable driving factors of runoff decline in the catchment.  相似文献   

20.
Dejuan Meng  Xingguo Mo 《水文研究》2012,26(7):1050-1061
Influences of climatic change on the components of global hydrological cycle, including runoff and evapotranspiration are significant in the mid‐ and high‐latitude basins. In this paper, the effect of climatic change on annual runoff is evaluated in a large basin—Songhua River basin which is located in the northeast of China. A method based on Budyko‐type equation is applied to separate the contributions of climatic factors to changes in annual runoff from 1960 to 2008, which are computed by multiplying their partial derivatives by the slopes of trends in climate factors. Furthermore, annual runoff changes are predicted under IPCC SRES A2 and B2 scenarios with projections from five GCMs. The results showed that contribution of annual precipitation to annual runoff change was more significant than that of annual potential evapotranspiration in the Songhua River basin; and the factors contributing to annual potential evapotranspiration change were ranked as temperature, wind speed, vapour pressure, and sunshine duration. In the 2020s, 2050s, and 2080s, changes in annual runoff estimated with the GCM projections exhibited noticeable difference and ranged from ? 8·4 to ? 16·8 mm a?1 (?5·77 to ? 11·53% of mean annual runoff). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号