首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonaqueous phase liquid (NAPL) is a long-term source of ground water contamination as the pollutant slowly partitions into the air and water phases. The objective of this work was to study the efficacy of aqueous surfactant solution to enhance the dissolution of a residual NAPL below the capillary fringe, hence reducing the time needed for aquifer restoration. An analytical technique was developed to measure the concentration of NAPL in a nonionic surfactant. Soil column experiments simulated conditions in the saturated soil where a NAPL may become trapped as a discontinuous immobile phase. Experimental results indicate that dissolution was a rate-limited process, approaching equilibrium concentrations after 24 hours. The relative permeability of the aqueous phase initially decreased as surfactant was injected, but increased over time as the saturation of residual NAPL was reduced through mass transfer into the surfactant-enhanced aqueous phase. These findings suggest that enhancing the aqueous phase with a nonionic surfactant may significantly enhance the in situ recovery or residual NAPL.  相似文献   

2.
Total concentrations of formate, acetate, and isobutyrate varied from less than 5 to greater than 9,000 μmol/l over distances of < 3 m in ground water from a shallow hydrocarbon contaminated aquifer. Laboratory incubations of aquifer material indicate that organic acid concentrations were dependent on the amount of hydrocarbon loading in the sediment and the relative rates of microbial organic acid production and consumption. In heavily contaminated sediments, production greatly exceeded consumption and organic acid concentrations increased. In lightly contaminated sediments rates were essentially equal and organic acid concentrations remained low. Concentrations of dissolved calcium, magnesium, and iron generally were one to two orders of magnitude higher in organic acid-rich ground water than in ground water having low organic acid concentrations. Carbonate and Fe(III)-oxyhydroxide minerals were the likely sources of these elements. Similarly, concentrations of dissolved silica, derived from quartz and k-feldspar, were higher in organic acid-rich ground water than in other waters. The positive relation (r = 0.60, p < .05, n = 16) between concentrations of silica and organic acids suggests that the microbially mediated buildup of organic acids in ground water enhanced quartz/k-feldspar dissolution in the aquifer, although it was not the only factor influencing their dissolution. A model that included organic acid microequivalents normalized by cation microequivalents significantly strengthened the correlation (r = 0.79, p < .001, n = 16) between dissolved silica and organic acid concentrations, indicating that competition between silica and cations for complexation sites on organic acids also influenced quartz/k-feldspar dissolution. Physical evidence for enhanced mineral dissolution in organic acid-rich waters included scanning electron microscopy images of highly corroded quartz and k-feldspar grains from portions of the aquifer containing organic acid-rich ground water. Microporosity generated in hydrocarbon contaminated sediments may adversely affect remediation efforts that depend on the efficient injection of electron acceptors into an aquifer or on the recovery of solutes from an aquifer.  相似文献   

3.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

4.
The generation of vapor‐phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non‐aqueous‐phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two‐dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water‐wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water‐saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective‐dispersive‐diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.  相似文献   

5.
Flow of nonvolatile nonaqueous phase liquid (NAPL) and aqueous phases that account for mobile, entrapped, and residual NAPL in variably saturated water-wet porous media is modeled and compared against results from detailed laboratory experiments. Residual saturation formation in the vadose zone is a process that is often ignored in multifluid flow simulators, which might cause an overestimation of the volume of NAPL that reaches the ground water. Mobile NAPL is defined as being continuous in the pore space and flows under a pressure gradient or gravitational body force. Entrapped NAPL is defined as being occluded by the aqueous phase, occurring as immobile ganglia surrounded by aqueous phase in the pore space and formed when NAPL is replaced by the aqueous phase. Residual NAPL is defined as immobile, nonwater entrapped NAPL that does not drain from the pore spaces and is conceptualized as being either continuous or discontinuous. Free NAPL comprises mobile and residual NAPL. The numerical model is formulated on mass conservation equations for oil and water, transported via NAPL and aqueous phases through variably saturated porous media. To account for phase transitions, a primary variable switching scheme is implemented for the oil-mass conservation equation over three phase conditions: (1) aqueous or aqueous-gas with dissolved oil, (2) aqueous or aqueous-gas with entrapped NAPL, and (3) aqueous or aqueous gas with free NAPL. Two laboratory-scale column experiments are modeled to verify the numerical model. Comparisons between the numerical simulations and experiments demonstrate the necessity to include the residual NAPL formation process in multifluid flow simulators.  相似文献   

6.
Ground water scientists have made significant advances in understanding the soil interactions, hydrogeology, fate and transport, and subsurface microbiology of aromatic hydrocarbons (BTEX) in aquifer systems. It is now generally recognized that a major factor responsible for the attenuation and mass reduction of BTEX in plumes is the widespread occurrence of hydrocarbon biodegradation by indigenous soil microorganisms in aquifer material. Most well-studied BTEX plumes that develop from the accidental release of gasoline fuels contain low levels of soluble hydrocarbons (< 1 to 5000 ppb) and have been shown to be spatially confined because of natural biotransformation mechanisms. These in situ processes are controlled by source and aquifer characteristics, permeability, sorption, and geochemical properties of the aquifer. Many laboratory subsoil-ground water microcosms and field studies (10 to 20 C) have demonstrated the rapid biodecay (1 to SO percent/day for microcosms and 0.5 to 1.5 percent/day for plumes) of these aromatic compounds under primarily aerobic conditions (i.e., those with sufficient dissolved oxygen). The ability to implement ground water bioremediation will depend upon our understanding of source control and aquifer recharge effects on the spatial distribution of plumes. In addition, estimating the biodegradation of sorbed BTEX, determining limits and potential for in situ biostimulation of soluble plumes, and establishing data requirements for predictive modeling of natural attenuation will be useful for this remediation technology. The use of these tools to manage ground water quality appears to represent the most practical alternative, particularly for low-risk ground water supplies.  相似文献   

7.
Experiments designed to elucidate the pore-scale mechanisms of the dissolution of a residual non-aqueous phase liquid (NAPL), trapped in the form of ganglia within a porous medium, are discussed. These experiments were conducted using transparent glass micromodels with controlled pore geometry, so that the evolution of the size and shape of individual NAPL ganglia and, hence, the pore-scale mass transfer rates and mass transfer coefficients could be determined by image analysis. The micromodel design permitted reasonably accurate control of the pore water velocity, so that the mass transfer coefficients could be correlated in terms of a local (pore-scale) Peclet number. A simple mathematical model, incorporating convection and diffusion in a slit geometry was developed and used successfully to predict the observed mass transfer rates. For the case of non-wetting NAPL ganglia, water flow through the corners in the pore walls was seen to control the rate of NAPL dissolution, as recently postulated by Dillard and Blunt [Water Resour. Res. 36 (2000) 439–454]. Break-up of doublet non-wetting phase ganglia into singlet ganglia by snap-off in pore throats was also observed, confirming the interplay between capillarity and mass transfer. Additionally, the effect of wettability on dissolution mass transfer was demonstrated. Under conditions of preferential NAPL wettability, mass transfer from NAPL films covering the solid surfaces was seen to control the dissolution process. Supply of NAPL from the trapped ganglia to these films by capillary flow along pore corners was observed to result in a sequence of pore drainage events that increase the interfacial area for mass transfer. These observations provide new experimental evidence for the role of capillarity, wettability and corner flow on NAPL ganglia dissolution.  相似文献   

8.
Wettability profoundly affects not only the initial distribution of residual NAPL contaminants in natural soils, but also their subsequent dissolution in a flowing aqueous phase. Under conditions of preferential NAPL wettability, the residual NAPL phase is found within the smaller pores and in the form of continuous corner filaments and thick films on pore walls. Such films expose a much greater interfacial area for mass transfer than would be exposed by the same amount of non-wetting NAPL. Importantly, capillary and hydraulic continuity of NAPL filaments and thick films is essential for sustaining NAPL–water counterflow during the course of NAPL dissolution in flowing groundwater—a mechanism which maintains and even increases the interfacial area for mass transfer. Continued dissolution results in gradual thinning of the NAPL films, which may become unstable and rupture causing disconnection of the residual NAPL in the form of clusters. Using a pore network simulator, we demonstrate that NAPL film instability drastically modifies the microscopic configuration of residual NAPL, and hence the local hydrodynamic conditions and interfacial area for mass transfer, with concomitant effects on macroscopically observable quantities, such as the aqueous effluent concentration and the fractional NAPL recovery with time. These results strongly suggest that the disjoining pressure of NAPL films may exert an important, and hitherto unaccounted, control on the dissolution behaviour of a residual NAPL phase in oil wet systems.  相似文献   

9.
Development of saline ground water through transpiration of sea water   总被引:2,自引:0,他引:2  
As vegetation usually excludes salt during water uptake, transpiration will increase the salinity of the residual water. If the source water is sea water, then the residual water may become highly saline. In the unconfined coastal aquifer of the tropical Burdekin River delta, northeastern Australia, areas of highly saline ground water with chloride concentrations up to almost three times that of sea water occur up to 15 km from the present coastline, and are attributed to transpiration by mangrove vegetation during periods of high sea level. Radiogenic ((14)C) carbon isotope analyses indicate that ground water with chloride concentrations between 15,000 and 35,000 mg/L is mostly between 4000 and 6000 years old, at which time sea level was 2 to 3 m higher than present. Stable isotope analyses of oxygen-18 and deuterium show no evidence for evaporative enrichment of this water. Oxygen-18, deuterium, and stable (delta(13)C) carbon isotope analyses of ground water and soil water point to a recharge environment beneath the mangrove forests during this postglacial sea level high stand. During that period, transpiration of the mangrove forests would have led to high chloride concentrations in the residual ground water, without inducing isotopic fractionation. Due to the higher density, this hypersaline water moved downward through the aquifer by gravity and has formed lenses of highly saline ground water at the bottom of the unconfined aquifer.  相似文献   

10.
This study presents a multiphase flow and multispecies reactive transport model for the simultaneous simulation of NAPL and groundwater flow, dissolution, and reactive transport with isotope fractionation, which can be used for better interpretation of NAPL-involved Compound Specific Isotope Analysis in 3D heterogeneous hydrogeologic systems. The model was verified for NAPL-aqueous phase equilibrium partitioning, aqueous phase multi-chain and multi-component reactive transport, and aqueous phase multi-component transport with isotope fractionation. Several illustrative examples are presented to investigate the effect of DNAPL spill rates, degradation rate constants, and enrichment factors on the temporal and spatial distribution of the isotope signatures of chlorinated aliphatic hydrocarbon groundwater plumes. The results clearly indicate that isotope signatures can be significantly different when considering multiphase flow within the source zone. A series of simulations indicate that degradation and isotope enrichment compete with dissolution to determine the isotope signatures in the source zone: isotope ratios remain the same as those of the source if dissolution dominates the reaction, while heavy isotopes are enriched in reactants along groundwater plume flow paths when degradation becomes dominant. It is also shown that NAPL composition can change from that of the injected source due to the partitioning of components between the aqueous and NAPL phases even when degradation is not allowed in NAPL phase. The three-dimensional simulation is presented to mechanistically illustrate the complexities in determining and interpreting the isotopic signatures with evolving DNAPL source architecture.  相似文献   

11.
Chlorinated degreasing solvents are multicomponent liquids containing not only the chlorinated hydrocarbons with which their name is associated (e.g., trichloroethylene or |TCE]. perchloroethylene or [PCE], 1,1,1-trichlorocihane [TCA]) but also a number of organic additives included as corrosion inhibitors and antioxidants. The additives, such as 1,4-dioxane, are likely to be of significant public-health importance as ground water contaminants due to their toxicity, solubility, and mobility. Following their use in vapor degreasing systems by industry, chlorinated degreasing solvents will also contain about 25% solubilized oil and grease.
A number of physical-chemical properties become especially important in the light of the multicomponent nature of these solvents. First, the higher aqueous solubility and lower sorption of the additives makes it is reasonable to expect that faster moving plumes of these solvent additives will precede plumes of the chlorinated hydrocarbons. Second, due to high losses of chlorinated hydrocarbons by volatilization from vapor degreasers during years in the middle of the century, it is probable that background concentrations of these hydrocarbons are present in ground water flow systems due to their downwind washout. Finally, the solubilized oil and grease may cause profound changes to the wettability of aquifer materials contacted by the solvents during their subsurface migration. It is argued, therefore, that the wettability of aquifer materials contaminated by chlorinated degreasing solvents needs to be experimentally determined before remediation of DNAPL at each site, rather than being simply assumed as water wet.  相似文献   

12.
Evaluation of volatilization as a natural attenuation pathway for MTBE   总被引:2,自引:0,他引:2  
Lahvis MA  Baehr AL  Baker RJ 《Ground water》2004,42(2):258-267
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m(-2)/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.  相似文献   

13.
An important quantity in groundwater protection is the residence time of water in an aquifer. It relates to both the travel time of a pollutant to arrive at a well and the time span required for self-purification of a polluted aquifer after removal of pollutant inputs. Time scales for aquifers can be gained from artificial tracer experiments or from environmental tracer data, the latter offering the only realistic alternative if time scales of years or decades have to be taken into account.

Different tracers show different time scales due to their different transport mechanisms especially in the unsaturated zone. While solute tracers are moved advectively with the seepage water, gas tracers pass the unsaturated zone diffusively through the air phase. Depending on the properties of the unsaturated zone (hydraulic properties, thickness) this difference in behavior can be used to separate the subsurface transport process into the unsaturated and the saturated parts.

In a field study in Germany, SF6 and 3H were used as environmental tracers. Both have a relatively well-known input function. Interpretation of data from observation wells by a box model approach led to spatially and temporally varying residence times. This was an indication that the influence of the unsaturated zone could not be neglected. While the gas tracer SF6 shows only residence times in the saturated zone, the tracer 3H reflects the whole travel time of water including both the unsaturated and saturated zones. Using a one-dimensional plug-flow model for the unsaturated zone combined with a detailed two-dimensional flow and transport model for the saturated zone leads to a holistic and consistent interpretation of the measured tracer concentrations. The observed pattern of old water under thick loess cover and younger water under areas where the fractured basalt aquifer crops out is reproduced after adjusting only two parameters: the effective porosity of the saturated aquifer and the product of field capacity and thickness of the unsaturated zone. While the effective porosity of the saturated zone is adjusted by means of the SF6 data, the field capacity of the loess layer is adjusted by means of the 3H observations. The thickness of the unsaturated zone is deduced from geological and pedological maps. All flow data are obtained from a calibrated flow model, which is based on geological data, observed heads and pumping tests only.

The transport model for the saturated zone was calibrated by fitting the porosity by means of gaseous tracer concentrations (SF6). The combined saturated–unsaturated zone model was then calibrated by fitting the field capacity of the unsaturated zone by means of 3H concentrations. With this model it was possible to verify the observed NO3 concentrations at the drinking water wells and to develop predictions for their future development under various scenarios of fertilizer input reduction in specific areas.  相似文献   


14.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

15.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

16.
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate‐rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field‐measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water–rock interactions. Water from wells flow through small fractures, which restrict flow and increase water–rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
MTBE and gasoline hydrocarbons in ground water of the United States   总被引:1,自引:0,他引:1  
The occurrence of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons was examined in three types of studies of ground water conducted by the U.S. Geological Survey: major aquifer surveys, urban land-use studies, and agricultural land-use studies. The detection frequency of MTBE was dependent on the study type, with the highest detection frequency in urban land-use studies. Only 13 ground water samples from all study types, or 0.3%, had concentrations of MTBE that exceeded the lower limit of the U.S. EPA's Drinking-Water Advisory. The detection frequency of MTBE was highest in monitoring wells located in urban areas and in public supply wells. The detection frequency of any gasoline hydrocarbon also was dependent on study type and generally was less than the detection frequency of MTBE. The probability of detecting MTBE in ground water was strongly associated with population density, use of MTBE in gasoline, and recharge. Ground water in areas with high population density, in areas where MTBE is used as a gasoline oxygenate, and in areas with high recharge rates had a greater probability of MTBE occurrence. Also, ground water from public supply wells and shallow ground water underlying urban land-use areas had a greater probability of MTBE occurrence compared to ground water from domestic wells and ground water underlying rural land-use areas. The probability of detecting MTBE in ground water was weakly associated with the density of leaking underground storage tanks, soil permeability, and aquifer consolidation, and only concentrations of MTBE >0.5 microg/L were associated with dissolved oxygen.  相似文献   

18.
Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sand-stone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but no other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.  相似文献   

19.
Behavior of gasoline pools following a denatured ethanol spill   总被引:1,自引:0,他引:1  
In 1999, approximately 72 m3 of denatured fuel-grade ethanol spilled at a bulk fuel terminal that had existing contamination within the subsurface. An unanticipated increase in the measured depth of the light nonaqueous phase liquid (LNAPL) was observed in nearby monitoring wells following the spill. This paper presents results of a laboratory analysis designed to understand the apparent increase in LNAPL mobility at this site. The two-dimensional stainless steel and glass tank allowed visual assessment of the potential effects that the addition of denatured ethanol may have on a site with pre-existing gasoline contamination. Digital images of gasoline and ethanol spill experiments were analyzed for changes in the characteristics of the existing gasoline pool and residual gasoline saturation in the unsaturated zone. Reductions in the surface and interfacial tensions resulted in significant changes in the size, shape, and saturation of the gasoline pool after the addition of ethanol to the system. The final gasoline pool occupied a smaller area and had a higher saturation. In addition, some smearing of the gasoline into the saturated zone occurred as the capillary fringe was depressed.  相似文献   

20.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号