首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.  相似文献   

2.
This paper reports a series solution of wave functions for two-dimensional scattering and diffraction of plane SH waves induced by a symmetrical V-shaped canyon with different shape ratios. A half-space with a symmetrical V-shaped canyon is divided into two sub-regions by using a circular-arc auxiliary boundary. The two sub-regions are represented by global and local cylindrical coordinate systems, respectively. In each coordinate system, the wave field satisfying the Helmholtz equation is represented by the separation of variables method, in terms of the series of both Bessel functions and Hankel functions with unknown complex coefficients. Then, the two wave fields are described in the local coordinate system using the Graf addition theorem. Finally, the unknown coefficients are sought by satisfying the continuity conditions of the auxiliary boundary. To consider the phase characteristics of the wave scattering, a parametric analysis is carried out in the time domain by assuming an incident signal of the Ricker type. Surface and subsurface transient responses demonstrate the characteristics and mechanisms of wave propagating and scattering.  相似文献   

3.
An analytical solution for the scattering and diffraction of incident plane SV waves by a shallow circular-arc canyon in a saturated poroelastic half-space is derived by the wave function expansion method. The solution is utilized to analyze the dependence of the computed surface motions on the incident frequencies, incident angles, porosity, boundary drainage and Poisson's ratio. It is shown that, depending on the incident angles, the surface displacement amplitudes around a canyon in a dry poroelastic half-space and saturated poroelastic half-space can be very different. The surface displacement amplitudes of an undrained saturated poroelastic half-space are close to those of a drained saturated poroelastic half-space. For low porosity, the surface displacement amplitudes of a saturated poroelastic half-space are almost identical to those of a dry poroelastic half-space, and drainage condition has little influence on the surface displacement amplitudes. But for high porosity, the effect of drainage condition becomes significant, and for the same porosity, the displacement amplitudes of an undrained saturated half-space will be larger than those of a drained saturated half-space. Poisson's ratio is also an important factor affecting the surface displacement amplitudes around the canyon, both in drained and undrained conditions, but leads to larger effects for an undrained saturated half-space than for a drained saturated half-space. Large pore pressures are found around the canyon and their amplitudes depend on the incident angles and frequencies. Below the surface, the amplitudes of pore pressures are less than they are at the surface, especially for high frequencies.  相似文献   

4.
Scattering and diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-ofplane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

5.
Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-of-plane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

6.
Scattering of elastic waves by three-dimensional canyons embedded within an elastic half-space is investigated by using a wave function expansion technique. The geometry of the canyon is assumed to be non-axisymmetric. The canyon is subjected to incident plane Rayleigh waves and oblique incident SH, SV and P waves. The unknown scattered wavefield is expressed in terms of spherical wave functions which satisfy the equations of motion and radiation conditions at infinity, but they do not satisfy stress-free boundary conditions at the half-space surface. The boundary conditions are imposed locally in the least-squares sense at several points on the surface of the canyon and the half-space. Through a comparative study the validity and limitations of two-dimensional approximations (antiplane strain and plane strain models) have been examined. It is shown that scattering of waves by three-dimensional canyons may cause substantial change in the surface displacement patterns in comparison to the two-dimensional models. These results emphasize the need for three-dimensional modelling of realistic problems of interest in strong ground motion seismology and earthquake engineering.  相似文献   

7.
A well-defined boundary-valued problem of wave scattering and diffraction in elastic half-space should have closed-form analytic solutions. This two-dimensional (2-D) scattering around a semi-circular canyon in elastic half-space subjected to seismic plane and cylindrical waves has long been a challenging boundary-value problem. In all cases, the diffracted waves will consist of both longitudinal (P-) and shear (S-) rotational waves. Together at the half-space surface, these in-plane longitudinal P- and shear SV-waves are not orthogonal over the infinite half-space flat-plane boundary. Thus, to simultaneously satisfy both the zero normal and shear stresses at the flat-plane boundary, some approximation of the geometry and/or wave functions often has to be made, or in some cases, relaxed (disregarded). This paper re-examines this two-dimensional (2-D) boundary-value problem from an applied mathematics points of view and redefines the proper form of the orthogonal cylindrical-wave functions for both the longitudinal P- and shear SV-waves so that they can together simultaneously satisfy the zero-stress boundary conditions at the half-space surface. With the zero-stress boundary conditions satisfied at the half-space surface, the most difficult part of the problem will be solved, and the remaining boundary conditions at the finite-canyon surface are then comparatively less complicated to solve. This is now a closed-form analytic solution of the 2-D boundary-valued problem satisfying the half-space zero-stress boundary conditions exactly.  相似文献   

8.
The three-dimensional scattering by a hemi-spherical canyon in an elastic half-space subjected to seismic plane and spherical waves has long been a challenging boundary-value problem. It has been studied by earthquake engineers and strong-motion seismologists to understand the amplification effects caused by surface topography. The scattered and diffracted waves will, in all cases, consist of both longitudinal (P-) and shear (S-) shear waves. Together, at the half-space surface, these waves are not orthogonal over the infinite plane boundary of the half-space. Thus, to simultaneously satisfy both zero normal and shear stresses on the plane boundary numerical approximation of the geometry and/or wave functions were required, or in some cases, relaxed (disregarded). This paper re-examines this boundary-value problem from the applied mathematics point of view, and aims to redefine the proper form of the orthogonal spherical-wave functions for both the longitudinal and shear waves, so that they can together simultaneously satisfy the zero-stress boundary conditions at the half-space surface. With the zero-stress boundary conditions satisfied at the half-space surface, the most difficult part of the problem will be solved, and the remaining boundary conditions at the finite canyon surface will be easy to satisfy.  相似文献   

9.
风化半圆形河谷对柱面SH波的散射解析解   总被引:1,自引:0,他引:1       下载免费PDF全文
风化河谷地震效应对建在此类场地上工程结构(如大坝、桥梁)的动力稳定性具有潜在的威胁,为揭示河谷风化层对地面运动的影响,利用波函数展开法推导风化半圆形河谷对线源柱面SH波散射问题的解析解。计算不同震源位置条件下风化半圆形河谷的地表位移反应和地面运动放大因子,分析地面运动的幅值和形态,发现随着震源距离的增大,在河谷附近地震动的放大和衰减的交替更频繁。  相似文献   

10.
半无限空间界面附近SH波对圆形衬砌的散射   总被引:6,自引:2,他引:6  
建立了求解半无限空间中SH波对浅埋圆形衬砌结构的散射与动应力集中问题的解析方法。利用SH波散射的对称性和多极坐标的方法,在复平面上构造出了一个可以预先满足半空间自由表面上应力自由的边界条件的浅埋圆形衬砌对稳态SH波散射的波函数,并构造出衬砌内的散射波函数。然后根据衬砌周围的边界条件,将该问题转化为对一组无穷代数方程组的求解。最后给出了具体算例,并讨论了其数值结果。  相似文献   

11.
The scattering of SV waves by a canyon in a fluid-saturated, poroelastic layered half-space is modeled using the indirect boundary element method in the frequency domain. The free-field responses are calculated to determine the displacements and stresses at the surface of the canyon, and fictitious distributed loads are then applied at the surface of the canyon in the free field to calculate the Green's functions for displacements and stresses. The amplitudes of the fictitious distributed loads are determined from the boundary conditions, and the displacements arising from the waves in the free field and from the fictitious distributed loads are summed to obtain the solution. The effects of fluid saturation, boundary conditions, porosity, and soil layers on the surface displacement amplitudes and phase shifts are discussed, and some useful conclusions are obtained. It is shown that the surface displacement amplitudes due to saturation and boundary conditions, different porosities, or the presence of a soil layer can be very dissimilar, and large phase shifts can be observed. The resulting wavelengths for an undrained saturated poroelastic medium are slightly longer than those for a drained saturated poroelastic medium; and are longer for a drained saturated poroelastic medium than those for a dry poroelastic medium. As porosity increases, the wavelengths become longer; and a layered half-space produces longer wavelengths than a homogeneous half-space.  相似文献   

12.
A closed-form solution of two-dimensional scattering of plane SH waves by a cylindrical canyon of circular-arc cross-section in a half-space is studied using the wave functions expansion method. The solution is reduced to solving infinite linear algebraic equations using the Graf's addition theorem in an appropriate form. Numerical results of the solution are obtained by truncation of the infinite equations and accuracies of the truncation are checked by the extent to which the numerical results fit the boundary condition and by convergence of the numerical results with the truncation order. Complicated effects of the depth-to-width ratio of the canyon on surface ground motion are shown by the numerical results for typical cases.  相似文献   

13.
Antiplane response of two scalene triangular hills and a semi-cylindrical canyon by SH-waves is studied using wave function expansion and complex function method. Firstly, the analytical model is divided into three parts, and the displacement solutions of wave fields are constructed based on boundary conditions in the three regions. Three domains are then conjoined to satisfy the "conjunction" condition at shared boundary. In addition, combined with the zero-stress condition of semi-cylindrical canyon, a series of infinite algebraic equations for the problem are derived. Finally, numerical examples are provided and the influence of different parameters on ground motion is discussed.  相似文献   

14.
In this paper we analyse the two-dimensional scattering and diffraction of plane SH waves by a semi-elliptical canyon. The exact series solution of the problem, for general angle of incidence of the plane SH waves, has been used to examine the dependence of surface amplifications inside and near the canyon. The nature of ground motion has been found to depend on two key parameters: (a) The angle of incidence. (b) The ratio of the canyon width to the wave length of incident SH waves. For short incident waves surface displacement amplitudes change rapidly from one point to another, while for the long waves and shallow canyons displacement amplitudes display only minor departure from the uniform half-space amplification of 2. For shallow canyons and long incident waves, the angle of incidence introduces only minor changes into the overall behaviour of surface amplitudes. For deep canyons and nearly grazing incidences, a prominent shadow zone is realized behind the canyon.  相似文献   

15.
Scattering and Diffraction of elastic in-plane P- and SV- waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.  相似文献   

16.
尤红兵  梁建文  赵凤新 《地震学报》2011,33(6):735-745,843
利用饱和土层的精确动力刚度矩阵和动力格林(Green)函数,采用间接边界元法,在频域内求解了层状饱和场地中任意凹陷地形对入射SV波的散射问题.通过自由场反应分析,求得凹陷地形表面各点的位移和各单元的应力响应;同样计算了虚拟分布荷载的格林影响函数,求得相应的位移和应力响应;根据边界条件确定虚拟分布荷载,将自由场位移响应和...  相似文献   

17.
SH波入射时半圆形凸起与凹陷地形的地震动   总被引:2,自引:0,他引:2  
研究了弹性半空间中半圆形凸起与凹陷相连地形对SH波的散射问题。将整个求解区域分割为2部分,在其中分别构造满足边界条件的位移解,通过移动坐标使之满足“公共边界”以及半圆形凹陷表面上的边界条件,从而建立起求解该问题的无穷代数方程组。最后,给出了地表位移幅值的数值结果以及凸起地形顶点和凹陷地形最低点处位移幅值的反应谱并进行了讨论。  相似文献   

18.
SH波对圆弧形凸起地形的散射   总被引:20,自引:3,他引:17  
本文采用“契合”的方法,给出了一个求解平面SH波对圆弧形凸起形散射的新方法。利用包括圆绵形凸起上边界线在内的一个圆域中预先构造的满足凸起边界应力为零。其余边界应力待定的级数解和其余下的具有圆弧形凹陷的半空间中的解答。通过在其结合面上完成“契合”的过程中分别确定出圆域和半空间听解答。给出了问题的最终结果。利用上述方法,问题的求解仍归结为对一个无穷代数方程组的求解。最后,本文给出了数值结果并对其进行了  相似文献   

19.
A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green’s functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.  相似文献   

20.
圆弧状凹陷地形对平面P波的散射:高频解答   总被引:2,自引:1,他引:1  
利用波函数的Fourier-Bessel级数展开,推导了具有不同深宽比的圆弧状凹陷地形对入射平面P波二维散射问题的解析解.与现有解析解不同之处在于,为了使该解析解适用于更高的入射波频率,本文利用了柱函数的渐进性质,使得散射波的待定系数可以直接确定,避免了线性方程组的求解以及相关的数值计算问题,从而拓展了该解析解适用的频带范围.通过与现有解析解的比较,论证了该解析解的正确性,进而在一个较宽的频带范围内分析了圆弧状凹陷地形对入射平面P波的散射效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号