首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This paper uses numerical and analytical methods to examine the static and seismic response of tunnels with intact and degraded segmental concrete tunnel liners. Concrete degradation is simulated using a non-linear finite element (FE) model that accounts for soil-structure interaction and the non-linear stress–strain response of the soil and concrete. The non-linear FE model is used to calculate radial stresses in tunnel linings with local concrete delaminations and that are subject to both static and seismic loads. Then, the FE results are compared with an analytical solution for jointed tunnel linings in order to assess the accuracy of the solution for predicting stresses in degraded liners. The analyses and results presented in this paper illustrate a simple method for estimating and evaluating the effect of concrete degradation on the distribution of thrust and moment in segmental tunnel linings subject to either static or seismic loads.  相似文献   

2.
A general, rigorous, coupled Boundary Element–Finite Element (BE–FE) formulation is presented for non-linear seismic soil–structure interaction in two dimensions. The BE–FE method is applied to investigate the inelastic response of earth dams to transient SV waves. The dam body, consisting of heterogeneous materials modelled with a simple non-linear hysteretic model, is discretized with finite elements, whereas the elastic half-space is discretized with boundary elements. The study focuses on the combined effects of the material non-linearity and foundation flexibility. The results show the significant effect of the foundation flexibility in reducing the response through radiation of energy. For excitations with peak ground accelerations from 0·2gto 0·6g, the crest acceleration amplification ranges from 2·5 to 1·4 and seems to be comparable with field observations and results from other studies. Deamplification increasing with strain is reported at the lower part of the dam. The method is computationally powerful and can be used for efficient non-linear analysis of complex soil–structure systems. The efficiency of the BE–FE method allows further improvements with incorporation of a more advanced constitutive model and consideration of the generation and dissipation of pore-water pressures during the earthquake. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Jiang  Tao  Dai  Junwu  Yang  Yongqiang  Bai  Wen  Pang  Hui  Liu  Rongheng 《地震工程与工程振动(英文版)》2022,21(4):1119-1135

Typical all-steel buckling-restrained braces (BRBs) usually exhibit obvious local buckling, which is attributed to the lack of longitudinal restraint to the rectangle core plate. To address this issue, all-steel BRBs are proposed, in which two T-shaped steel plates are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. In order to investigate the factors that characterize the hysterical responses of this device, different finite element (FE) models are developed for the specific context. The FE models are developed based on nonlinear finite element software, which incorporate continuum (shell or brick) elements, large displacement, and deformation formulations. In these FE models, two different steel constitutive models are adopted to precisely reproduce the cyclic response of the BRB component. Meanwhile, comparisons between the numerical and experimental results are conducted to validate the effectiveness and accuracy of the robust FE model. The agreements between experimental observations and numerical predictions demonstrate that the FE method could be utilized for in depth parametric analysis. Furthermore, BRBs with detailed configurations can provide excellent hysteretic behavior and seismic performance through the optimal design process.

  相似文献   

4.
Under seismic excitation, liquefied clean medium to dense cohesionless soils may regain a high level of shear resistance at large shear strain excursions. This pattern of response, known as a form of cyclic mobility, has been documented by a large body of laboratory sample tests and centrifuge experiments. A plasticity-based constitutive model is developed with emphasis on simulating the cyclic mobility response mechanism and associated pattern of shear strain accumulation. This constitutive model is incorporated into a two-phase (solid–fluid), fully coupled finite element code. Calibration of the constitutive model is described, based on a unique set of laboratory triaxial tests (monotonic and cyclic) and dynamic centrifuge experiments. In this experimental series, Nevada sand at a relative density of about 40% is employed. The calibration effort focused on reproducing the salient characteristics of dynamic site response as dictated by the cyclic mobility mechanism. Finally, using the calibrated model, a numerical simulation is conducted to highlight the effect of excitation frequency content on post-liquefaction ground deformations.  相似文献   

5.
In this paper, different approaches aimed at investigating the dynamic behaviour of circular tunnels in the transverse direction are presented. The analysed cases refer to a shallow tunnel built in two different clayey deposits. The adopted approaches include 1D numerical analyses performed modelling the soil as a single-phase visco-elastic non-linear medium, the results of which are then used to evaluate the input data for selected analytical solutions proposed in the literature (uncoupled approach), and 2D fully coupled FE simulations adopting visco-elastic and visco-elasto-plastic effective stress models for the soil (coupled approach). The results are proposed in terms of seismic-induced loads in the transverse direction of the tunnel lining. The different constitutive hypotheses adopted in the coupled numerical approach prove to play a significant role on the results. In particular, the plasticity-based analyses indicate that a seismic event can produce a substantial modification of loads acting in the lining, leading to permanent increments of both hoop force and bending moment.  相似文献   

6.
合理选择本构模型是土动力学问题数值模拟中的一项重要工作。利用PLAXIS 2D软件的土工实验模拟功能分别对4种常用的岩土本构模型——线弹性模型、摩尔库伦模型、土体硬化模型和小应变土体硬化模型在往复荷载下的理论滞回曲线进行了对比分析,并在此基础上研究了选择不同本构模型对自由场地震反应分析结果的影响以及不同本构模型中各参数的变化对场地动力计算结果的敏感性分析。研究结果为土动力学问题数值模拟中如何选择本构模型和合理判断数值分析结果提供了参考依据。  相似文献   

7.
Laboratory study of seismic free-field response of sand   总被引:2,自引:0,他引:2  
This paper describes a new soil-structure interaction test box for use on a moderately large shaking table. The test box is designed to replicate, as nearly as possible, the free-field seismic response of a soil layer overlying a rigid base. Results from shaking table testing are presented which demonstrate the ability of the test box to serve as a large-scale shear device. The test box is unique in its ability to determine dynamic shear modulus for both high- and low-amplitude shear strain, and also to study the dynamic response of sand under low levels of confining stress. Dynamic shear modulus for standard Ottawa sand was measured over a wide range of shear strain amplitude and compared with data from the existing literature. Finally, based on results from the test box, a constitutive model is proposed which describes the free field response of a sand layer overlying bedrock and subjected to vertically propagating SH waves. The model is simple in form with a single parameter uniquely related to the friction angle of the sand.  相似文献   

8.
Numerous research studies have proved that numerical models aiming at an accurate evaluation of the seismic response of RC framed buildings cannot ignore the inelastic behaviour of infills and the interaction between infill and frame elements. To limit the high computational burden of refined non-linear finite element models, in the latest decades, many researchers have developed simplified infill models by means of single or multiple strut-elements. These models are low time-consuming and thus adequate for static and dynamic analyses of multi-storey structures. However, their simulation of the seismic response is sometimes unsatisfying, particularly in the presence of infill walls with regular or (particularly) irregular distributions of openings. This paper presents a new 2D plane macro-element, which provides a refined simulation of the non-linear cyclic response of infilled framed structures at the expense of a limited computational cost. The macro-element consists of an articulated quadrilateral panel, a single 1D diagonal link, and eight 2D links and is able to model the shear and flexural behaviour of the infill and the non-linear flexural/sliding interaction between infill and surrounding frame. The proposed macro-element has been implemented into the open source software OpenSees and used to simulate the response of single-storey, single-span RC infilled frame prototypes tested by other authors. The above prototypes are selected as made of different masonry units and characterised by full or open geometric configuration.  相似文献   

9.
This paper presents the constitutive relations and the simulative potential of a new plasticity model developed mainly for the seismic liquefaction analysis of geostructures. The model incorporates the framework of critical state soil mechanics, while it relies on bounding surface plasticity with a vanished elastic region to simulate the non-linear soil response. Key constitutive ingredients of the new model are: (a) the inter-dependence of the critical state, the bounding and the dilatancy (open cone) surfaces on the basis of the state parameter ψ, (b) a (Ramberg–Osgood type) non-linear hysteretic formulation for the “elastic” strain rate, (c) a discontinuously relocatable stress projection center related to the “last” load reversal point, which is used for mapping the current stress point on model surfaces and as a reference point for introducing non-linearity in the “elastic” strain rate and finally (d) an empirical index of the directional effect of sand fabric evolution during shearing, which scales the plastic modulus. In addition, the paper outlines the calibration procedure for the model constants, and exhibits its accuracy on the basis of a large number of laboratory element tests on Nevada sand. More importantly, the paper explores the potential of the new model by presenting simulations of the VELACS centrifuge tests of Models No 1 and 12, which refer to the free-field liquefaction response of Nevada sand and the seismic response of a rigid foundation on the same sand, respectively. These simulations show that the new model can be used successfully for the analysis of widely different boundary value problems involving earthquake soil liquefaction, with the same set of model constants calibrated on the basis of laboratory element tests.  相似文献   

10.
Nonlinear finite element (FE) modeling has been widely used to investigate the effects of seismic isolation on the response of bridges to earthquakes. However, most FE models of seismic isolated bridges (SIB) have used seismic isolator models calibrated from component test data, while the prediction accuracy of nonlinear FE models of SIB is rarely addressed by using data recorded from instrumented bridges. In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlinear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2 phases: component‐wise and system‐wise FEMU. The isolator model parameters obtained from 23 isolator component tests show large scatter, and poor goodness of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earthquake is obtained when most of those parameter sets are used for the isolator elements of the bridge model. In contrast, good agreement is obtained between the FE‐predicted and measured bridge response when the isolator model parameters are calibrated using the bridge response data recorded during the mega‐earthquake. Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization problems using high‐throughput cloud computing. The updated FE model is then used to reconstruct response quantities not recorded during the earthquake, gaining more insight into the effects of seismic isolation on the response of the bridge during the strong earthquake.  相似文献   

11.
大型河谷场地地震动特性研究   总被引:6,自引:0,他引:6  
张孝波  景立平  肖文海 《地震学刊》2010,(6):644-649,654
采用有限差分方法,通过算例研究了大型河谷场地地震动特性分析中的人工边界的选取方法,对比分析了不同人工边界的选取对数值模拟结果的影响,确定了散射场地震反应分析输入边界的地震动输入方法,认为在进行有限差分动力计算时,模型两侧施加自由场边界的模拟效果要优于两侧施加粘性边界的模拟效果;同时,对FLAC计算软件进行二次开发,对2个地形差异较大的河谷场地,采用线性和非线性摩尔-库仑模型进行了地震反应对比分析,研究了河谷场地地震动幅值和频谱特性随地形变化的规律。模拟数据表明,河谷场地谷底处地震动基本无放大作用,地势凸起处放大作用则较为明显;当考虑土体非线性时,随着地震动强度的增加,放大作用逐渐减小;谱分析结果表明,地势凸起处受高频地震动的影响显著,而地势平坦的谷底则受低频地震动的影响显著。  相似文献   

12.
In this study, a constitutive model of high damping rubber bearings (HDRBs) is developed that allows the accurate representation of the force–displacement relationship including rate‐dependence for shear deformation. The proposed constitutive model consists of two hyperelastic springs and a nonlinear dashpot element and expresses the finite deformation viscoelasticity laws based on the classical Zener model. The Fletcher–Gent effect, manifested as high horizontal stiffness at small strains and caused by the carbon fillers in HDRBs, is accurately expressed through an additional stiffness correction factor α in the novel strain energy function. Several material parameters are used to simulate the responses of high damping rubber at various strain levels, and a nonlinear viscosity coefficient η is introduced to characterize the rate‐dependent property. A parameter identification scheme is applied to the results of the multi‐step relaxation tests and the cyclic shear tests, and a three‐dimensional function of the nonlinear viscosity coefficient η with respect to the strain, and strain rate is thus obtained. Finally, to investigate the accuracy and feasibility of the proposed model for application to the seismic response assessment of bridges equipped with HDRBs, an improved real‐time hybrid simulation (RTHS) test system based on the velocity loading method is developed. A single‐column bridge was used as a test bed and HDRBs was physically tested. Comparing the numerical and RTHS results, advantage of the proposed model in the accuracy of the predicted seismic response over comparable hysteretic models is demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Shear effects are often a very important issue on the seismic behaviour of piers, particularly for hollow section bridge piers. In fact, for this type of piers the cyclic response is similar to that of a structural wall in which both the transverse reinforcement ratio and the detailing can play an important role on its performance, even likely to be determinant in terms of the failure mechanism. On the other hand, codes and design guidelines are usually very conservative concerning shear capacity in order to avoid any shear failure mechanism likely to trigger well known catastrophic consequences. Therefore, research studies on this topic are still needed for a better understanding of pier cyclic shear response and also for improvement of the performance under seismic actions. Pursuing this general objective, this paper partially reports on an experimental/numerical campaign carried out on 1:4 reduced scale bridge piers in order to highlight and investigate shear-type problems. Within the scope of this paper, two specimens types were selected having equal rectangular hollow section (900 × 450 mm2, 75 mm thick) but different transverse reinforcement detailing, namely one with a single stirrup per wall (representative of typical bridge construction without seismic design requirements) and another with multiple stirrups, according to Eurocode 8 provisions. Numerical simulations of the experimental results were also conducted aiming at contributing for complete and consistent interpretations of experimental results. Detailed modelling was performed allowing for realistic simulations of the non linear behaviour, particularly suitable when a significant shear component is involved. Therefore, the numerical strategy was based on a detailed 3D FEM discretization using a two-scalar variable damage model for the concrete constitutive law and a suitable cyclic behaviour law for steel bars represented by truss elements. Results have shown that shear deformation and failure modes are well simulated, while providing detailed insight concerning concrete damage pattern and distribution of yielding on the transverse and longitudinal reinforcement.  相似文献   

14.
A finite element method for seismic fracture analysis of concrete gravity dams is presented. The proposed smeared crack analysis model is based on the non-linear fracture behaviour of concrete. The following features have been considered in the development of the model: (i) the strain softening of concrete due to microcracking; (ii) the rotation of the fracture band with the progressive evolution of microcrack damage in finite elements; (iii) the conservation of fracture energy; (iv) the strain-rate sensitivity of concrete fracture parameters; (v) the softening initiation criterion under biaxial loading conditions; (vi) the closing-reopening of cracks under cyclic loading conditions. The seismic fracture and energy response of dams and the significance of viscous damping models to take account of non-cracking structural energy dissipation mechanisms are discussed. The influences of global or local degradation of the material fracture resistance on the seismic cracking response of concrete dams were also studied. Two-dimensional seismic response analyses of Koyna Dam were performed to demonstrate the application of the proposed non-linear fracture mechanics model.  相似文献   

15.
Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame “RC-MRF” buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element (FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model.  相似文献   

16.
It is shown in this paper that experimental results on stiffness and damping corresponding to cyclic deforming of soils can be well approached theoretically on an interval of strain variation from zero to arbitrary large values of strains. For this purpose, the following two methods are recommended: a modification of the hysteretic model obeying Masing's rule by adding elastic stresses to pure hysteretic stresses that do not change the corresponding backbone curve; and, as the second method, a non-linear model with frequency independent loss of energy in periodic processes. It is shown that in the area close to the free surface of soil, normalized strains resulting from propagation of seismic waves can be very large, even in the case of an input motion of relatively low intensity. Therefore, a using analytical approximations for experimental stress–strain relationships, which are suitable only for an interval of small and medium values of normalized strains, is insufficient in seismic response analysis.  相似文献   

17.
A simple constitutive model is proposed for an in‐plane numerical analysis of unreinforced masonry structures, which are subject to cyclic loading, by using explicit dynamic procedures. The proposed model is implemented by using two‐dimensional plane‐stress finite elements. Three different constitutive relations that are based on the total strain in the global material system are used. Cracking and crushing are controlled through normal strains, whereas shear is controlled through shear strain. Separate hysteretic rules are adopted for each mode of damage. A numerical analysis of masonry walls that are subject to cyclic loading has demonstrated that the use of explicit procedures in conjunction with the proposed model results in an acceptable accuracy when compared with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The dynamic response of piles to seismic loading is explored by means of an extensive parametric study based on a properly calibrated Beam-on-Dynamic-Winkler-Foundation (BDWF) model. The investigated problem consists of a single vertical cylindrical pile, modelled as an Euler–Bernoulli beam, embedded in a subsoil consisting of two homogeneous viscoelastic layers of sharply different stiffness resting on a rigid stratum. The system is subjected to vertically propagating seismic S waves, in the form of a transient motion imposed on rock outcrop. Several accelerograms recorded in Italy are employed as input motions in the numerical analyses. The paper highlights the severity of kinematic pile bending in the vicinity of the interface separating the two soil layers. In addition to factors already investigated such as layer stiffness contrast, relative soil–pile stiffness, interface depth and intensity of ground excitation, the paper focuses on additional important factors, notably soil material damping, stiffness of Winkler springs and frequency content of earthquake excitation. Existing predictive equations for assessing kinematic pile bending at soil layer interfaces are revisited and new regression analyses are performed. A synthesis of findings in terms of a set of simple equations is provided. The use of these equations is discussed through examples.  相似文献   

19.
To predict the earthquake response of saturated porous media it is essential to correctly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after earthquake shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element framework that has been developed and utilized for this purpose. The framework employs fully coupled dynamic field equations with a upU formulation for simulation of pore fluid and solid skeleton interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed verification and validation of the formulation and implementation of the developed numerical tool, it is employed in the seismic response of saturated porous media. The study includes examination of the mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in uniform and layered profiles of saturated sand deposits.  相似文献   

20.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号