首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater beneath the former Nebraska Ordnance Plant (NOP) is contaminated with the explosive hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and trichloroethene (TCE). Previous treatability experiments confirmed that permanganate could mineralize RDX in NOP aquifer material. The objective of this study was to determine the efficacy of permanganate to transform RDX in the field by monitoring a pilot‐scale in situ chemical oxidation (ISCO) demonstration. In this demonstration, electrical resistivity imaging (ERI) was used to create two‐dimensional (2‐D) images of the test site prior to, during, and after injecting sodium permanganate. The ISCO was performed by using an extraction‐injection well configuration to create a curtain of permanganate. Monitoring wells were positioned downgradient of the injection zone with the intent of capturing the permanganate‐RDX plume. Differencing between ERI taken preinjection and postinjection determined the initial distribution of the injected permanganate. ERI also quantitatively corroborated the hydraulic conductivity distribution across the site. Groundwater samples from 12 downgradient wells and 8 direct‐push profiles did not provide enough data to quantify the distribution and flow of the injected permanganate. ERI, however, showed that the permanganate injection flowed against the regional groundwater gradient and migrated below monitoring well screens. ERI combined with monitoring well samples helped explain the permanganate dynamics in downgradient wells and support the use of ERI as a means of monitoring ISCO injections.  相似文献   

2.
A two-dimensional, transient-flow, and transport numerical model was developed to simulate in situ chemical oxidation (ISCO) of trichloroethylene and tetrachloroethylene by potassium permanganate in fractured clay. This computer model incorporates dense, nonaqueous phase liquid dissolution, reactive aquifer material, multispecies matrix diffusion, and kinetic formulations for the oxidation reactions. A sensitivity analysis for two types of parameters, hydrogeological and engineering, including matrix porosity, matrix organic carbon, fracture aperture, potassium permanganate dosage, and hydraulic gradient, was conducted. Remediation metrics investigated were the relative rebound concentrations arising from back diffusion and percent mass destroyed. No well-defined correlation was found between the magnitude of rebound concentrations during postremedy monitoring and the amount of contaminant mass destroyed during the application. Results indicate that all investigated parameters affect ISCO remediation in some form. Results indicate that when advective transport through the fracture is dominant relative to diffusive transport into the clay matrix (large System Peclet Number), permanganate is more likely to be flushed out of the system and treatment is not optimal. If the System Peclet Number is too small, indicating that diffusion into the matrix is dominant relative to advection through the fracture, permanganate does not traverse the entire fracture, leading to postremediation concentration rebound. Optimal application of ISCO requires balancing advective transport through the fracture with diffusive transport into the clay matrix.  相似文献   

3.
Groundwater samples collected at sites where in situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of groundwater contaminants and permanganate (MnO4), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and contaminant in aqueous samples may negatively impact the quality of the sample as well as the analytical instruments used to quantify contaminant concentrations. In this study, binary mixtures comprised of (1) a multicomponent standard with permanganate and (2) groundwater samples collected at two ISCO field sites were preserved with ascorbic acid. Ascorbic acid reacts rapidly with the MnO4 and limits the reaction between MnO4 and the organic compounds in the mixture. Consequently, most of the compounds in the multicomponent standard were within the control limit for quality assurance. However, despite timely efforts to preserve the samples, the rapid reaction between permanganate and contaminant caused the concentration of several sensitive compounds to fall significantly below the lower control limit. Concentrations of volatile organic compounds in the field‐preserved binary mixture groundwater samples were greater than in samples refrigerated in the field and preserved upon arrival at the laboratory, indicating the time‐dependency and benefit of field preservation. The molar ratio of ascorbic acid required to neutralize KMnO4 was 1.64 (mol ascorbic acid/mol KMnO4); this provided a baseline to estimate the volume of ascorbic acid stock solution and/or the weight of crystalline ascorbic acid required to neutralize MnO4. Excess ascorbic acid did not negatively impact the quality of the aqueous samples, or analytical instruments, used in the analyses.  相似文献   

4.
Groundwater beneath the former Nebraska Ordnance Plant (NOP) is contaminated with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The current pump and treat facility is preventing offsite migration but does not offer a short-term solution. Our objective was to quantify the effectiveness of permanganate to degrade RDX in situ. This was accomplished by performing laboratory treatability experiments, aquifer characterization, and a pilot-scale in situ chemical oxidation (ISCO) demonstration. Treatability experiments confirmed that permanganate could mineralize RDX in the presence of NOP aquifer solids. The pilot-scale ISCO demonstration was performed using an extraction-injection well configuration to create a curtain of permanganate between two injection wells. RDX destruction was then quantified as the RDX-permanganate plume migrated downgradient through a monitoring well field. Electrical resistivity imaging (ERI) was used to identify the subsurface distribution of permanganate after injection. Results showed that RDX concentrations temporally decreased in wells closest to the injection wells by 70% to 80%. Observed degradation rates (0.12 and 0.087/d) were lower than those observed under laboratory batch conditions at 11.5 °C (0.20/d) and resulted from lower than projected permanganate concentrations. Both ERI and spatial electrical conductivity measurements verified that permanganate distribution was not uniform throughout the 6.1-m (20 feet) well screens and that groundwater sampling captured both treated and nontreated groundwater during pumping. Although heterogeneous flow paths precluded a uniform permanganate distribution, pilot-scale results provided proof-of-concept that permanganate can degrade RDX in situ and support permanganate as a possible remedial treatment for RDX-contaminated groundwater.  相似文献   

5.
A critical analysis of in situ chemical oxidation (ISCO) projects was performed to characterize situations in which ISCO is being implemented, how design and operating parameters are typically employed, and to determine the performance results being achieved. This research involved design of a database, acquisition and review of ISCO project information, population of the database, and analyses of the database using statistical methods. Based on 242 ISCO projects included in the database, ISCO has been used to treat a variety of contaminants; however, chlorinated solvents are by far the most common. ISCO has been implemented at sites with varied subsurface conditions with vertical injection wells and direct push probes being the most common delivery methods. ISCO has met and maintained concentrations below maximum contaminant levels (MCLs), although not at any sites where dense nonaqueous phase liquids (DNAPL) were presumed to be present. Alternative cleanup levels and mass reduction goals have also been attempted, and these less stringent goals are met with greater frequency than MCLs. The use of pilot testing is beneficial in heterogeneous geologic media, but not so in homogeneous media. ISCO projects cost $220,000 on average, and cost on average $94/yd3 of target treatment zone. ISCO costs vary widely based on the size of the treatment zone, the presence of DNAPL, and the oxidant delivery method. No case studies were encountered in which ISCO resulted in permanent reductions to microbial populations or sustained increases in metal concentrations in groundwater at the ISCO-treated site.  相似文献   

6.
Geochemical effects on metals following permanganate oxidation of DNAPLs   总被引:2,自引:0,他引:2  
Crimi ML  Siegrist RL 《Ground water》2003,41(4):458-469
The application of in situ chemical oxidation for dense, nonaqueous phase liquid (DNAPL) remediation requires delivery of substantial levels of oxidant chemicals into the subsurface to degrade target DNAPLs and to satisfy natural oxidant demand. This practice can raise questions regarding changes in subsurface conditions, yet information regarding potential effects, especially at the field scale, has been lacking. This paper describes an evaluation of the effects on metals associated with in situ chemical oxidation using potassium permanganate at Launch Complex 34 (LC34), Cape Canaveral Air Station, Florida. At LC34, high concentrations of permanganate (1 to 2 wt%) were injected into the subsurface as part of a demonstration of DNAPL remediation technologies. In a companion experimental effort at the Colorado School of Mines, field samples were characterized and laboratory batch and mini-column studies were completed to assess effects of permanganate oxidation on metals in the subsurface one year after completion of the field demonstration. Results indicated there was potential for long-term immobilization of a portion of introduced manganese and no treatment-induced loss in subsurface permeability due to deposition of manganese oxides particles, which are a product of the oxidation reactions. Permanganate treatment did cause elevated manganese, chromium, and nickel concentrations in site ground water within the treated region. Some of these metals effects can be attenuated during downgradient flow through uncontaminated and untreated aquifer sediments.  相似文献   

7.
Activated persulfate is a commonly used oxidant source used for in situ chemical oxidation (ISCO) for remediation of subsurface contamination. Surfactants are sometimes used in ISCO to desorb contaminants and dissolve nonaqueous phase liquids (NAPLs). The potential activation of persulfate by such surfactants was investigated, and the reactive oxygen species generated by persulfate in the presence of anionic, nonionic, and cationic surfactants were determined. Twenty surfactants were screened; most activated persulfate to generate reductants + nucleophiles at acidic and basic pH. The most reactive anionic, nonionic, and cationic surfactants (Lankropol 4500, polyethylene glycol 400, and Ethoduomeen T/25) were investigated in more detail. All three surfactants activated persulfate; however, the cationic surfactant showed the most potential for persulfate activation with high fluxes of hydroxyl radical and reductants + nucleophiles. The results of this research demonstrate that surfactants added to ISCO systems often activate persulfate to generate reductants at both acidic and basic pH, and hydroxyl radical at basic pH. These findings provide a new paradigm for persulfate activation in surfactant in situ chemical oxidation (SISCO) systems; pH regimes >11 may not be necessary for persulfate activation resulting in cost savings and potentially more effective activation of persulfate.  相似文献   

8.
To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.  相似文献   

9.
This research was conducted to evaluate the combination of electromigration and potassium permanganate as a potential remediation method for low-permeability media (e.g., soil and sediment) contaminated with dissolved and sorbed organic contaminants. The experimental procedure was composed of two stages: determination of migration rates of permanganate through homogeneous cores and a primarily qualitative analysis of migration in more heterogeneous, two-dimensional scenarios. Results indicated that transport of permanganate through fine-grained porous media and clays can be undertaken using electromigration, and electromigration rates were found to be at least 400% faster than diffusion alone. In addition, the use of an applied electric field in a flushing scenario was shown to result in almost 100% sweep efficiency of a domain consisting of clay blocks interspersed in a glass bead medium. The results of the study show that there is potential for this method to be able to deliver permanganate and other potential remedial agents to treat contaminated zones within heterogeneous and low-permeability porous media through in situ chemical oxidation or other processes.  相似文献   

10.
Release of Chromium from Soils with Persulfate Chemical Oxidation   总被引:1,自引:0,他引:1  
An important part of the evaluation of the effectiveness of persulfate in situ chemical oxidation (ISCO) for treating organic contaminants is to identify and understand its potential impact on metal co‐contaminants in the subsurface. Chromium is a redox‐sensitive and toxic metal the release of which poses considerable risk to human health. The objective of this study was to investigate the impact of persulfate chemical oxidation on the release of chromium from three soils varying in physical‐chemical properties. Soils were treated with unactivated and activated persulfate [activated with Fe(II), Fe(II)‐EDTA, and alkaline pH] at two different concentrations (i.e., 41 mM and 2.1 mM persulfate) for 48 h and 6 months and were analyzed for release of chromium. Results show that release of chromium with persulfate chemical oxidation depends on the soil type and the activation method. Sandy soil with low oxidant demand released more chromium compared to soils with high oxidant demand. More chromium was released with alkaline pH activation. Alkaline pH and high Eh conditions favor oxidation of Cr(III) to Cr(VI), which is the main mechanism of release of chromium with persulfate chemical oxidation. Unactivated and Fe(II)‐activated persulfate decreased pH and at low pH in absence of EDTA chromium release is not a concern. These results indicate that chromium release can be anticipated based on the given site and treatment conditions, and ISCO system can be designed to minimize potential chromium release when treating soils and groundwater contaminated with both organic and metal contaminants.  相似文献   

11.
This paper investigates the hybrid technology of electrokinetics (EK) coupled with bioremediation (Bio) in the removal of pyrene (PYR) in a soil matrix. Five different treatments were conducted to investigate the coupling interactions between EK and Bio on PYR degradation. A simulated removal curve was obtained by combining the degradation curves in EK‐ and Bio‐only experiments. The results show that the simulated curve fitted well with the actual degradation curve in electro‐bioremediation (EK‐Bio) experiments for the first 30 days of the experiment, while at later stages a discrepancy was found. This discrepancy was caused by adverse effects of low soil pH (3.6) near the anode on bacteria health during EK treatments. With polarity reversal (PR) to control the soil pH, the simulated curve fitted very well (r > 0.99) with the actual degradation curve during the whole treatment period. At the end of the experiment, PYR removal amounted to 63% with EK‐Bio treatments in PR electric fields, which was 1.7 times that of Bio‐only. Moreover, the bacteria counts under electric fields were more than that without EK. The spatial distributions of PYR degradation and bacterial counts were also investigated. The results show that they were both higher nearer the electrodes under PR electric fields.  相似文献   

12.
We present a numerical study for 3D time‐lapse electromagnetic monitoring of a fictitious CO2 sequestration using the geometry of a real geological site and a suite of suitable electromagnetic methods with different source/receiver configurations and different sensitivity patterns. All available geological information is processed and directly implemented into the computational domain, which is discretized by unstructured tetrahedral grids. We thus demonstrate the performance capability of our numerical simulation techniques. The scenario considers a CO2 injection in approximately 1100 m depth. The expected changes in conductivity were inferred from preceding laboratory measurements. A resistive anomaly is caused within the conductive brines of the undisturbed reservoir horizon. The resistive nature of the anomaly is enhanced by the CO2 dissolution regime, which prevails in the high‐salinity environment. Due to the physicochemical properties of CO2, the affected portion of the subsurface is laterally widespread but very thin. We combine controlled‐source electromagnetics, borehole transient electromagnetics, and the direct‐current resistivity method to perform a virtual experiment with the aim of scrutinizing a set of source/receiver configurations with respect to coverage, resolution, and detectability of the anomalous CO2 plume prior to the field survey. Our simulation studies are carried out using the 3D codes developed in our working group. They are all based on linear and higher order Lagrange and Nédélec finite‐element formulations on unstructured grids, providing the necessary flexibility with respect to the complex real‐world geometry. We provide different strategies for addressing the accuracy of numerical simulations in the case of arbitrary structures. The presented computations demonstrate the expected great advantage of positioning transmitters or receivers close to the target. For direct‐current geoelectrics, 50% change in electric potential may be detected even at the Earth's surface. Monitoring with inductive methods is also promising. For a well‐positioned surface transmitter, more than 10% difference in the vertical electric field is predicted for a receiver located 200 m above the target. Our borehole transient electromagnetics results demonstrate that traditional transient electromagnetics with a vertical magnetic dipole source is not well suited for monitoring a thin horizontal resistive target. This is due to the mainly horizontal current system, which is induced by a vertical magnetic dipole.  相似文献   

13.
Electrical resistivity tomography was used in order to explore an experimental site of the LaSalle Beauvais Polytechnic Institute (France). The test was conducted along a profile line of 315 m length, using 64 electrodes deployed at an inter‐electrode spacing of 5 m, and the data were recorded using gradient, Wenner and pole–dipole arrays. The performance of plate electrodes (non‐conventional flat‐based) is compared with the performance of peak electrodes (conventional spike). The hydrogeophysical investigation of the chalk aquifer system of Beauvais shows that the performance of plate electrodes is satisfactory, leading to inversions of small root‐mean‐square errors. Peak and the plate electrodes were tested before and after injection of a salt tracer in the piezometer of the experimental site. The study demonstrates the usefulness of plate electrodes (efficient, less time consuming) and the possibility of aquifer characterization by a salt tracer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower‐permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this study is to examine use of a shear‐thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications is lacking. A field‐scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in an STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth‐discrete monitoring intervals and electrical resistivity tomography (ERT) showed that inclusion of STF in the injection solution improved the distribution of the injected fluid within the targeted treatment zone. One improvement was a reduction in the movement of injected fluids through high‐permeability pathways, as evidenced by slower breakthrough of tracer at monitoring locations where breakthrough in baseline tracer‐only injection data was faster. In addition, STF‐amended injection solutions arrived faster and to a greater extent in monitoring locations within low‐permeability zones. ERT data showed that the STF injection covered a higher percentage of a two‐dimensional cross section within the injection interval between the injection well and a monitoring well about 3 m away.  相似文献   

15.
3D resistivity inversion using 2D measurements of the electric field   总被引:3,自引:0,他引:3  
Field and 'noisy' synthetic measurements of electric-field components have been inverted into 3D resistivities by smoothness-constrained inversion. Values of electrical field can incorporate changes in polarity of the measured potential differences seen when 2D electrode arrays are used with heterogeneous 'geology', without utilizing negative apparent resistivities or singular geometrical factors. Using both the X - and Y -components of the electric field as measurements resulted in faster convergence of the smoothness-constrained inversion compared with using one component alone. Geological structure and resistivity were reconstructed as well as, or better than, comparable published examples based on traditional measurement types. A 2D electrode grid (20 × 10), incorporating 12 current-source electrodes, was used for both the practical and numerical experiments; this resulted in 366 measurements being made for each current-electrode configuration. Consequently, when using this array for practical field surveys, 366 measurements could be acquired simultaneously, making the upper limit on the speed of acquisition an order of magnitude faster than a comparable conventional pole–dipole survey. Other practical advantages accrue from the closely spaced potential dipoles being insensitive to common-mode noise (e.g. telluric) and only 7% of the electrodes (i.e. those used as current sources) being susceptible to recently reported electrode charge-up effects.  相似文献   

16.
Electrical resistance heating (ERH) is a thermal treatment technology that involves passing electrical current through soil to increase subsurface temperatures. In addition to volatizing and recovering contaminant mass in the gas phase, heating the subsurface has the potential to decompose contaminants by increasing the rate of degradation reactions. Prior laboratory studies using convective heating demonstrated that the rate of tetrachloroethene (PCE) degradation was not sufficient to cause substantial in situ PCE mass destruction. However, similar experiments have not been performed using ERH, which has the potential to degrade PCE in reaction with the heating electrodes and electrochemically. Thus, the objective of this study was to determine the extent of PCE degradation during thermal treatment of PCE‐contaminated soil using a bench‐scale ERH system. The contaminated soil, a silty clay loam, was collected from a single borehole at a former dry cleaning facility prior to undergoing ERH treatment. After 30 days of ERH, 52% of the initial PCE mass was recovered, potentially indicating that 48% of the PCE was degraded during ERH. Although potential degradation products such as carbon dioxide were observed, their presence was attributed to the degradation of soil organic carbon and carbonates rather than PCE destruction. A second ERH experiment was conducted to assess the potential benefit of adding the heat‐activated oxidant, sodium‐persulfate, during treatment. After 19 days of ERH and three persulfate injections, 93% of the initial PCE was recovered, with 3% PCE destruction based on chloride evolution. However, the difference in mass recovery between the first and second experiments could have been due to differences in the initial mass of PCE, even though soil from the same core was used in both experiments. The results of this work suggest that the majority of mass recovered during ERH of the PCE‐contaminated soil at the former dry cleaning facility will be due to volatilization and gas phase extraction rather than abiotic degradation, even with the addition of sodium persulfate.  相似文献   

17.
A validation experiment, carried out in a scaled field setting, was attempted for the long electrode electrical resistivity tomography method in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock‐up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The long electrode results were compared to results from conventional point electrodes on the surface and buried within the survey domain. Using a pole‐pole array, both point and long electrode imaging techniques identified the lateral extents of the pre‐formed plume with reasonable fidelity but the long electrode method was handicapped in reconstructing vertical boundaries. The pole‐dipole and dipole‐dipole arrays were also tested with the long electrode method and were shown to have the least favourable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole‐dipole and dipole‐dipole arrays was attributed to an inexhaustive and non‐optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole‐dipole and dipole‐dipole arrays using long electrodes were shown to have significantly higher average and maximum values within the matrix than any pole‐pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole‐dipole and dipole‐dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.  相似文献   

18.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   

19.
Remediation of the sites contaminated with organic contaminants, such as chlorobenzenes, remains a challenging issue. Electroosmotic flushing can be a promising approach which is based on mechanism of electrokinetic remediation for removal of organic contaminants from fluids in low‐permeability soil. To select an optimum surfactant that can effectively enhance electroosmotic flushing, three common surfactants, Triton X‐100 (EK2), Tween 80 (EK3), and a mixture of sodium dodecyl sulfate and Triton X‐100 (EK4) buffered with Na2HPO4/NaH2PO4 solution, were tested. The efficiency of each kind of surfactant was evaluated using a three‐dimensional box filled with a clayey soil spiked with 1,2,4‐trichlorobenzene, and compared with a test (EK1) without surfactant. The results demonstrated that the buffer solutions efficiently neutralized H+ and OH? produced by electrolysis. EK3 with Tween 80 added in the flushing solution reached the highest electroosmotic permeability of 10?4 cm2/v/s and achieved a notably high cumulative electroosmotic flow (EOF) of 5067 mL within 6 d, which was 6.3, 3.4, and 4.2 times higher than that in EK1, EK2, and EK4, respectively. There were 420 mL more cumulative EOF obtained after 50 h of electrical application in EK4 than in EK2. The introduction of nonreactive ions can increase the current, thereby benefiting the EOF. Both the higher pH caused by the buffer and the application of nonionic surfactants can make the zeta potential more negative, thereby increasing the EOF. Tween 80 can be recommended as the best flushing solution for removing organic contaminants from sites when electrokinetic remediation is applied.  相似文献   

20.
We present a low‐cost, reliable method for long‐term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with an electrode spacing of 5 cm. Once installed, these were wired to the CR‐1000 Campbell Scientific Inc. datalogger at the surface to electrically image infiltration fronts in the shallow subsurface. This system was constructed and installed in June 2005 to collect apparent resistivity and temperature data from 96 subsurface electrodes set to a pole‐pole resistivity array pattern and 14 thermistors at regular intervals of 30 cm through May of 2008. From these data, a temperature and resistivity relationship was determined within the vadose zone (to a depth of ~1 m) and within the saturated zone (at depths between 1 and 2 m). The high vertical resolution of the data with resistivity measurements on a scale of 5‐cm spacing coupled with surface precipitation measurements taken at 3‐min intervals for a period of roughly 3 years allowed unique observations of infiltration related to seasonal changes. Both the vertical resistivity instrument probes and the data logger system functioned well for the duration of the test period and demonstrated the capability of this low‐cost monitoring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号