首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The determination of hydraulic properties in non-stationary experiments is suspected to be affected by dynamic effects. This is based on thermodynamic considerations on the pore scale displacement of wetting and non-wetting phase. But also macroscopic heterogeneities at the continuum scale may influence the dynamics of water during drainage and wetting. In this paper we investigate both aspects. Firstly, we present the results of typical multi-step outflow experiments in heterogeneous sand columns which are compared with two-step outflow experiments covering the same pressure range. The discrepancies caused by pressure steps of different size reveal the impact of dynamic effects due to the non-stationarity of the experiments.  相似文献   

2.
3.
A periodic vertical movement of the groundwater table results in a subsequent cyclic response of the water content and pressure profiles in the vadose zone. The sequence of periodic wetting and drying processes can be affected by hysteresis effects in this zone. A one-dimensional saturated/unsaturated flow model based on Richards’ equation and the Mualem (Soil Sci. 137 (1984) 283) hysteresis model is formulated which can take into account multi-cycle hysteresis effects in the relation between capillary pressure and water content. The numerical integration of the unsaturated flow equation is based on a Galerkin-type finite element method. The flow domain is discretised by finite elements with linear shape functions. Simulations start with static water content and pressure profiles, which correspond to either a boundary drying or wetting retention curve. To facilitate the numerical solution of the hysteretic case an implicit non-iterative procedure was chosen for the solution of the nonlinear differential equation. Laboratory experiments were performed with a vertical sand column by imposing a high frequency periodic pressure head at the lower end of the column. The total water volume in the column, and the periodic water content profile averaged over time were measured. The boundary drying and wetting curves of the relation between water content and capillary pressure were determined by independent experiments. The simulations of the experimental conditions show a clear effect of the hysteresis phenomenon on the water content profile. The simulations with hysteresis agree well with the measurements. Computed dimensionless water content profiles are presented for different oscillation frequencies with and without consideration of hysteresis.  相似文献   

4.
Causes and effects of non-uniqueness in capillary pressure and saturation (PcS) relationship in porous media are of considerable concern to researchers of two-phase flow. In particular, a significant amounts of discussion have been generated regarding a parameter termed as dynamic coefficient (τ) which has been proposed for inclusion in the functional dependence of PcS relationship to quantify dynamic Pc and its relation with time derivative of saturation. While the dependence of the coefficient on fluid and porous media properties is less controversial, its relation to domain scale appears to be dependent on artefacts of experiments, mathematical models and the intra-domain averaging techniques. In an attempt to establish the reality of the scale dependency of the τS relationships, we carry out a series of well-defined laboratory experiments to determine τS relationships using three different sizes of cylindrical porous domains of silica sand. In this paper, we present our findings on the scale dependence of τ and its relation to high viscosity ratio (μr) silicone oil–water system, where μr is defined as the viscosity of non-wetting phase over that of the wetting phase. An order of magnitude increase in the value of τ was observed across various μr and domain scales. Also, an order of magnitude increase in τ is observed when τ at the top and the bottom sections in a domain are compared. Viscosity ratio and domain scales are found to have similar effects on the trend in τS relationship. We carry out a dimensional analysis of τ which shows how different variables, e.g., dimensionless τ and dimensionless domain volume (scale), may be correlated and provides a means to determine the influences of relevant variables on τ. A scaling relationship for τ was derived from the dimensionless analysis which was then validated against independent literature data. This showed that the τ–S relationships obtained from the literature and the scaling relationship match reasonably well.  相似文献   

5.
A model is studied which claims to describe the effects of air pressure variations on the outflow of radon into the atmosphere from loose deposits that are treated as a porous medium having the gas dynamic properties described by Darcy’s law. It is shown that the model results are in satisfactory agreement with the experimental data acquired from a network for monitoring subsoil radon in the Petropavlovsk-Kamchatskii Geodynamic Site in 1997–2006. A technique has been developed for estimating the Darcy coefficient based on radon concentration data in loose deposits at various depths.  相似文献   

6.
Design of a model blasting system to measure peak p-wave stress   总被引:4,自引:0,他引:4  
Literature review information and model scale rock blasting tests have been utilized to study the effects of some blast and fragmentation parameters on peak p-wave stress. A method for modelling scaled blasting in sandstone blocks with dimensions 515×335×215 mm3 has been presented. The dynamic and static properties of the sandstone are given. The results from model blasting experiments instrumented with pressure gauges are discussed. It is also shown there exists a useful correlation between blast, fragmentation parameters and peak p-wave stress.  相似文献   

7.
Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment‐water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h—greater than the expected net‐zero flux, but significantly less than theoretical wave‐driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one‐way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments.  相似文献   

8.
Long‐term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time‐compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Fluid pressure diffusion occurring on the microscopic scale is believed to be a significant source of intrinsic attenuation of mechanical waves propagating through fully saturated porous rocks. The so-called squirt flow arises from compressibility heterogeneities in the microstructure of the rocks. To study squirt flow experimentally at seismic frequencies the forced oscillation method is the most adequate, but such studies are still scarce. Here we present the results of forced hydrostatic and axial oscillation experiments on dry and glycerine-saturated Berea sandstone, from which we determine the dynamic stiffness moduli and attenuation at micro-seismic and seismic frequencies (0.004–30 Hz). We observe frequency-dependent attenuation and the associated moduli dispersion in response to the drained–undrained transition (∼0.1 Hz) and squirt flow (>3 Hz), which are in fairly good agreement with the results of the corresponding analytical solutions. The comparison with very similar experiments performed also on Berea sandstone in addition shows that squirt flow can potentially be a source of wave attenuation across a wide range of frequencies because of its sensitivity to small variations in the rock microstructure, especially in the aspect ratio of micro-cracks or grain contacts.  相似文献   

10.
The Lisse effect revisited   总被引:5,自引:0,他引:5  
Weeks EP 《Ground water》2002,40(6):652-656
The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, psi(f), analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than psi(f) and that the depth of penetration of the wetting front is no more than several millimeters.  相似文献   

11.
Streaming‐potentials are produced by electrokinetic effects in relation to fluid flow and are used for geophysical prospecting. The aim of this study is to model streaming potential measurements for unsaturated conditions using an empirical approach. A conceptual model is applied to streaming potential measurements obtained from two drainage experiments in sand. The streaming potential data presented here show a non‐monotonous behaviour with increasing water saturation, following a pattern that cannot be predicted by existing models. A model involving quasi‐static and dynamic components is proposed to reproduce the streaming potential measurements. The dynamic component is based on the first time derivative of the driving pore pressure. The influence of this component is investigated with respect to fluid velocity, which is very different between the two experiments. The results demonstrate that the dynamic component is predominant at the onset of drainage in experiments with the slowest water flow. On the other hand, its influence appears to vanish with increasing drainage velocity. Our results suggest that fluid flow and water distribution at the pore scale have an important influence on the streaming potential response for unsaturated conditions. We propose to explain this specific streaming potential response in terms of the behaviour of both rock/water interface and water/air interfaces created during desaturation processes. The water/air interfaces are negatively charged, as also observed in the case of water/rock interfaces. Both the surface area and the flow velocity across these interfaces are thought to contribute to the non‐monotonous behaviour of the streaming potential coefficient as well as the variations in its amplitude. The non‐monotonous behaviour of air/water interfaces created during the flow was highlighted as it was measured and modelled by studies published in the literature. The streaming potential coefficient can increase to about 10 to 40 when water saturation decreases. Such an increase is possible if the amount of water/air interfaces is increased in sufficient amount, which can be the case.  相似文献   

12.
不同循环荷载作用下软黏土动力特性对比试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
研究交通循环荷载作用下路基软黏土的长期沉降和动力力学性质对路基设计具有重要意义。本文通过GDS动三轴实验,研究(不排水条件下)振动波形、排水条件以及动应力比三因素对于软黏土动应变和动孔压的影响。试验结果显示:排水条件对饱和软黏土的动应变和动孔压影响最大,在部分排水条件下动孔压逐渐消散,动应变迅速发展。振动波形对软黏土动应变和动孔压影响较大,单向纯压半正弦波作用下软黏土的动应变和动孔压较容易达到最大值。在较少的振次内动应力比对孔压影响较大,但在归一化的孔压模型中,动应力比对孔压影响较小。通过以上分析,本文建立包含循环振次和纯压因素的孔压增长模型。  相似文献   

13.
Dense nonaqueous phase liquid (DNAPL) accumulation and recovery from wells cannot be accurately modeled through typical pressure or flux boundary conditions due to gravity segregation of water and DNAPL in the wellbore, the effects of wellbore storage, and variations of wellbore inflow and outflow rates with depth, particularly in heterogeneous formations. A discrete wellbore formulation is presented for numerical modeling of DNAPL accumulation in observation wells and DNAPL removal from recovery wells. The formulation includes fluid segregation, changing water and DNAPL levels in the well and the corresponding changes in fluid storage in the wellbore. The method was added to a three-dimensional finite difference model (CompSim) for three phase (water, gas, DNAPL) flow. The model predictions are compared to three-dimensional pilot scale experiments of DNAPL (benzyl alcohol) infiltration, redistribution, recovery, and water flushing. Model predictions match experimental results well, indicating the appropriateness of the model formulation. Characterization of mixing in the extraction well is important for predicting removal of highly soluble organic compounds like benzyl alcohol. A sensitivity analysis shows that the incorporation of hysteresis is critical for accurate prediction. Among the multiphase flow and transport parameters required for modeling, results are most sensitive to soil intrinsic permeability.  相似文献   

14.
A dominant mechanism for residual trapping of a nonwetting fluid in porous media during imbibition is snap-off or the disconnection of a continuous stream of the nonwetting fluid when it passes through pore constrictions and when a criterion based on capillary pressure imbalance is met. While quasi-static criteria for Roof snap-off have been defined for pores based on the imbalance between capillary pressure across the front/tail meniscus and local capillary pressure at the pore throat, and expressed in terms of pore body to pore throat ratio for simplification, we extended the previous quasi-static snap-off criterion by considering the local capillary pressure imbalance between the pore body and the pore throat for both circular and noncircular pores when the wetting film exists. We then used the criterion to analyze results from computational fluid dynamics (CFD) simulations of multi-phase flow with supercritical CO2 as the nonwetting fluid and water as the wetting fluid. The extended criterion successfully described most situations we modeled. Furthermore, we compared fluid interface shape for a noncircular 3D pore predicted by the minimum surface energy (MSE) theory against 3D CFD simulations. While the fluid interface shape at the pore throat for 3D simulation was consistent with the shape predicted by MSE theory, the shape could not be successfully predicted by the MSE theory at the upstream and downstream pore body. Moreover, film flow existed for the noncircular pore at the downstream pore body.  相似文献   

15.
This paper discusses multi-step drainage experiments in two heterogeneously packed sand columns (10 × 10 × 20 cm3). Different packing structures were generated using two different sand types. One purpose of the study was to test the influence of packing structures on the movement of water. The second purpose was to assess the quality of predictions for the outflow curves in both columns made with an upscaled model. The heterogeneous structures of the columns can be considered as two opposing extremes. The first column was packed with a random arrangement of two sand types that is not stochastically homogeneous and where a cluster running through the column exists for both materials. The second column was packed with a periodic pattern of coarse-sand inclusions in a fine-sand background and has a clearly defined unit cell. The depth-averaged (2D) spatial distribution of the water content in the columns was monitored during the whole multi-step outflow experiment using neutron radiography. The 3D water content was measured at the steady states by neutron tomography. The experimental results are compared with the model predictions of an upscaled model derived with the homogenization theory. The parameters for the upscaled model are calculated from the hydraulic parameters of the two sand types. These hydraulic parameters were first identified in independent measurements on samples of the two individual sand types, separately. Additionally, the hydraulic parameters of both sands were identified by fitting a numerical model to the measured outflow curves. The different column structures showed a significant effect on water retention and the effective retention function, as water was trapped in the coarse-sand inclusions of the periodic structure. We included this trapping effect in the effective retention function of the upscaled model with an apparent air entry pressure. Contrary to the retention, the different packing structures had no large effect on the dynamic behavior of the outflow. The effective conductivity of the columns is therefore not significantly influenced by the structure. The upscaled models predicted the movement of the averaged water content in the two columns well. This confirms the applicability of upscaled models even if the underlying requirements are not strictly met.  相似文献   

16.
A well-controlled 3-D experiment with pre-defined block heterogeneities is conducted, where neutron tomography is used to map 3-D water distribution after two successive drainage steps. The material and hydraulic properties of the two sands are first measured in the laboratory with multistep outflow experiments. Additionally, the pore structure of the sands is acquired by means of image analysis of synchrotron tomography data and the structure is used for pore-scale simulation of one- and two-phase flow with Lattice-Boltzmann methods. This gives us another set of material and hydraulic parameters of the sands. The two sets of hydraulic properties (from the lab scale and from the pore scale) are then used in numerical simulations of the 3-D experiment.  相似文献   

17.
A non-hydrostatic terrain-following model in cross sectional form is applied to study the processes in the lee of a sill in an idealized stratified fjord during super-critical tidal inflow. A sequence of numerical studies with horizontal grid sizes in the range from 100 to 1.5625 m are performed. All experiments are repeated using both hydrostatic and non-hydrostatic versions of the model, allowing a systematic study of possible non-hydrostatic pressure effects and also of the sensitivity of these effects to the horizontal grid size. The length scales and periods of the internal waves in the lee of the sill are gradually reduced and the amplitudes of these waves are increased as the grid size is reduced from 100 down to 12.5 m. With a further reduction in grid size, more short time and space scale motions become superimposed on the internal waves. Associated with the internal wave activity, there is a deeper separation point that is fairly robust to all parameters investigated. Another separation point nearer to the top of the sill appears in the numerical results from the high-resolution studies with the non-hydrostatic model. Associated with this shallower separation point, an overturning vortex appears in the same set of numerical solutions. This vortex grows in strength with reduced grid size in the non-hydrostatic experiments. The effects of the non-hydrostatic pressure on the velocity and temperature fields grow with reduced grid size. In the experiments with horizontal grid sizes equal to 100 or 50 m, the non-hydrostatic pressure effects are small. For smaller grid sizes, the time mean velocity and temperature fields are also clearly affected by the non-hydrostatic pressure adjustments.  相似文献   

18.
This paper presents the results of shaking table model tests which were carried out to investigate the pore water pressure generation and related liquefaction mechanism in layered sand deposits. The experiments were performed on uniform sand columns, silt interlayered sand columns and two layered sand columns deposited at various relative densities and subjected to different input excitations. During the experiments excess pore water pressures were measured by pore pressure transducers installed at three different depths and, surface settlements and thickness of water film developed under less permeable inclusions were measured by a digital camera. The experimental results are discussed and compared to demonstrate the effects of relative density, input acceleration and presence of a silt seam on the generation of excess pore water pressure in sand deposits subjected to dynamic loading. The results showed that the presence of a less permeable silt interlayer within the sand deposit and existence of a loose sand layer underlying dense sand deposits can have significant effect on the pore water pressure generation mechanism.  相似文献   

19.
Irrigation experiments on 12 instrumented field plots were used to assess the impact of dynamic soil crack networks on infiltration and run‐off. During applications of intensity similar to a heavy rainstorm, water was seen being preferentially delivered within the soil profile. However, run‐off was not observed until soil water content of the profile reached field capacity, and the apertures of surface‐connected cracks had closed >60%. Electrical resistivity measurements suggested that subsurface cracks persisted and enhanced lateral transport, even in wet conditions. Likewise, single‐ring infiltration measurements taken before and after irrigation indicated that infiltration remained an important component of the water budget at high soil water content values, despite apparent surface sealing. Overall, although the wetting and sealing of the soil profile showed considerable complexity, an emergent property at the hillslope scale was observed: all of the plots demonstrated a strikingly similar threshold run‐off response to the cumulative precipitation amount. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号