首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   

2.
This paper presents the correlation of the results of a new model for the dynamic analysis of reinforced concrete (RC) frames with the experimental time history of a two storey RC frame shaking-table specimen. The frame member model consists of separate subelements that describe the deformations due to flexure, shear and bond slip in RC structural elements. The subelements are combined by superposition of flexibility matrices to form the frame element. A non-linear solution method which accounts for the unbalance of internal forces between different subelements during a given load increment is used with the model. The ability of the proposed model to describe the dynamic response of frame structures under earthquake excitations is evaluated by comparing the analytical results with experimental evidence from a two-storey, one bay reinforced concrete frame tested on the shaking-table. The model parameters for the shaking-table specimen are derived from available experimental evidence and first principles of reinforced concrete. The effect of reinforcing bar slip on the local and global dynamic response of the test structure is assessed. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a three‐dimensional analysis framework, based on the explicit finite element method, for the simulation of reinforced concrete components under cyclic static and dynamic loading. A recently developed triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for rupture due to low‐cycle fatigue. The reinforcing bars are represented with geometrically nonlinear beam elements to account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is used in a commercial finite element program and validated with the results of experimental static and dynamic tests on reinforced concrete columns and walls. The analyses are supplemented with a parametric study to investigate the impact of several modeling assumptions on the obtained results.  相似文献   

4.
A new simplified modelling strategy to simulate the non‐linear behaviour of reinforced concrete shear walls under dynamic loading is presented. The equivalent reinforced concrete (ERC) model is derived from the framework method and uses lattice meshes for concrete and reinforcement bars and uniaxial constitutive laws based on continuum damage mechanics and plasticity. Results show the capacity of the model to analyse structures having different slenderness and boundary conditions. For low reinforcement ratios however, results are sensitive to the angle formed by the diagonals of the concrete lattice and the horizontal bars. The method is compared with the shear multi‐layered beam model that uses Timoshenko multi‐layered 2D beam elements and biaxial constitutive laws. Comparisons for both models with experimental results of two research programs (one organized by NUPEC and the other by COGEMA and EDF) are provided. ERC is a simplified method that intends to save computer time and allows parametrical studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This paper discusses the dynamic tests, system identification, and modeling of a 10‐story reinforced concrete building. Six infill walls were demolished in 3 stages during the tests to introduce damage. In each damage stage, dynamic tests were conducted by using an eccentric‐mass shaker. Accelerometers were installed to record the torsional and translational responses of the building to the induced excitation, as well as its ambient vibration. The modal properties in all damage states are identified using 2 operational modal analysis methods that can capture the effect of the wall demolition. The modal identification is facilitated by a finite element model of the building. In turn, the model is validated through the comparison of the numerically and experimentally obtained modal parameters. The validated model is used in a parametric study to estimate the influence of structural and nonstructural elements on the dynamic properties of the building and to assess the validity of commonly used empirical formulas found in building codes. Issues related to the applicability and feasibility of system identification on complex structures, as well as considerations for the development of accurate, yet efficient, finite element models are also discussed.  相似文献   

6.
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a fiber beam-column element considering flexure–shear interaction and bond-slip effect is developed for cyclic analysis of reinforced concrete (RC) structures. The element is based on conventional displacement-based Timoshenko beam theory, where the transverse shear deformation is included, and adopts the fiber model to describe the section force–deformation behavior. In the fiber model, shear deformation is assumed to be uniformly distributed along the section and is only resisted by concrete, thus the multi-dimensional concrete damage model is used for concrete fibers and therefore flexure–shear interaction is reflected naturally at the material level. Meanwhile, to account for the significant bond-slip effect at critical regions, the anchorage slip of bars at these regions is analytically derived. Then it is used to modify the uniaxial stress–strain model for steel fibers by assuming that the total strain can be treated as the sum of the bar deformation and anchorage slip, therefore the bond-slip effect is implicitly but simply represented. To validate the proposed element, a series of RC member and structure tests under cyclic loading are simulated. The results indicate that the proposed element can predict cyclic responses of RC structures, and can be used as a reliable tool for analysis of RC structures.  相似文献   

8.
9.
Evaluating the inelastic seismic response of structures accurately is of great importance in earthquake engineering and generally requires refined simulation, which is a time‐consuming process. Because the material nonlinearity generally occurs in a small part of the whole structure, many researches focus on taking advantage of this characteristic to improve the computational efficiency and the inelasticity‐separated finite element method (IS‐FEM) proposed recently provide a generic finite element formulation for solving this kind of problems efficiently. Although the fiber beam‐column element is widely used for the simulation of reinforced concrete (RC) framed structures, the inelastic deformation is often detected in a large part of the numerical model under earthquake excitation so that it is hard to achieve high efficient computation when applying the IS‐FEM to the inelastic response analysis of RC fiber models directly. In this paper, a new numerical scheme for seismic response analysis of RC framed structures model by fiber beam‐column element is proposed based on the IS‐FEM. To implement the RC fiber model for use in IS‐FEM and improve the computational performance of proposed scheme, a method of identifying the local domains with severe section inelasticity level is proposed and a modified Kent‐Park concrete material model is developed. Because the Woodbury formula is adopted as the solver, the global stiffness matrix can keep unchanged throughout the analysis and the main computational effort is only invested on a small matrix representing local inelastic behavior. The numerical examples demonstrate the validity and efficiency of the proposed scheme.  相似文献   

10.
通过钢筋混凝土构件的动态试验,研究不同加载速率下的钢筋混凝土梁柱力学特性。考虑屈服强度、极限强度和刚度的动力效应,引入损伤因子,并考虑混凝土损伤对卸载刚度的影响,建立了钢筋混凝土构件率相关的三折线恢复力模型。利用有限元分析软件模拟钢筋混凝土构件的动态试验,对比模拟结果与试验结果得出:考虑应变率效应和混凝土损伤对卸载刚度的影响,能够更好地反映构件的动力特性。对一平面框架结构模型进行不同加载速率下的动态分析,研究加载速率对结构动力反应的影响,结果表明,随着加载速率的增大,结构模型各构件的强度和刚度增大,结构模型整体抗侧移刚度增强,水平位移减小。  相似文献   

11.
An existing two‐dimensional macroelement for reinforced concrete beam–column joints is extended to a three‐dimensional macroelement. The three‐dimensional macroelement for beam–column joints consists of six rigid interface plates and uniaxial springs for concrete, steel, and bond–slip, which model the inside of a beam–column joint. The mechanical models for the materials and the stiffness equation for the springs are also presented. To validate the model, we used test results from three slab–beam–column sub‐assemblages subjected to bi‐lateral cyclic load. It is revealed that the new joint model is capable of capturing the strength of beam–column joints and the bidirectional interaction in joint shear response, including the concentration of damage in the beam–column joint, the pinching nature in hysteretic behavior, the stiffness degradation, and strength deterioration resulting from cyclic and bidirectional loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
This paper discusses the sensitivity of softening reinforced concrete frame structures to the changes in input ground motion and investigates the possibility of localizations for this type of structure in static and dynamic analysis. A finite element model is used in which the sections resisting force are calculated using a proposed differential hysteretic model. This model is especially developed for modelling softening behaviour under cyclic loading. To obtain parameters of the differential model the moment–curvature of each section is evaluated using a microplane constitutive law for concrete and bi‐linear elasto‐plastic law for reinforcements. The capability of the procedure is verified by comparing results with available experimental data at element level, which shows good accuracy of the procedure. The effect of possible changes in ground motion is assessed using a non‐stationary Kanai–Tajimi process. This process is used to generate ground motions with approximately the same amplitude and frequency content evolution as those of base ground motion. The possibility of localization in static and dynamic loading is investigated using two structures. A measure for the possibility of localization in code‐designed structures is obtained. This study indicates that localization may occur in ordinary moment‐resisting structures located in high seismic zones. Localization may result in substantial drift in global response and instability due to Pδ effect. Also, it is shown that the structure becomes very sensitive to the input ground motion. It is concluded that allowance by some design codes of the use of ordinary moment‐resisting frames in regions with high seismicity should be revised or improvements should be made in the detailing requirements at critical sections of these structures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This work focuses on the modelling issues related to the adoption of the pushover analysis for the seismic assessment of existing reinforced concrete (RC) structures. To this purpose a prototype reference structure, one of the RC shear walls designed according to the multi‐fuse concept and tested on shaking table for the CAMUS project, is modelled at different levels of refinement. The meso‐scale of a stiffness‐based fibre element and the micro‐scale of the finite element (FE) method are herein adopted; in the latter separate elements are adopted for the concrete, the steel and the steel–concrete interface. This first of the two companion papers presents in detail the wall under study, illustrating the design philosophy, the geometry of the wall, the instrumentation set‐up and the test programme. The two modelling approaches are then described; the most important points in terms of element formulation and constitutive relations for materials are presented and discussed for each approach, in the light of the particular design of the wall and of its experimental behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical procedure for a dynamic non-linear finite element analysis is proposed here to analyse three-dimensional reinforced concrete shear wall structures subjected to earthquake motions. A shear wall is modelled as a quasi-three dimensional structure which is composed of plane elements considering the in-plane stiffness of orthogonal flange panels. The proposed constitutive model is based on the non-linearity of reinforcement and concrete in which the tension stiffening in tension and the degradation of stiffness and strength in compression of concrete after cracking are considered. The acceleration-pulse method, which is a kind of explicit analytical procedure, is employed to solve the non-linear dynamic equations, where the dynamic equation can be solved without stiffness matrix and so the iterative procedure is not necessary for descending portion of stress–strain relationship caused by cracking and softening after compressive strength in concrete. The damping effect is considered by assuming equivalent viscous damping which can give good cyclic behaviours of inertia force vs. displacement relationships. This analytical method was applied to a test specimen of a reinforced concrete shear wall with a H-shaped section which was vibrated up to failure by using a large-scale shaking table with high -performance in Japan. The test was performed as one of the dynamic model tests for evaluation of seismic behaviour of nuclear reactor buildings. The calculations were performed sequentially from the elastic range to failure. The comparison with the test results shows that this approach has good accuracy. © 1997 by John Wiley & Sons Ltd  相似文献   

15.
A simple constitutive model is proposed for an in‐plane numerical analysis of unreinforced masonry structures, which are subject to cyclic loading, by using explicit dynamic procedures. The proposed model is implemented by using two‐dimensional plane‐stress finite elements. Three different constitutive relations that are based on the total strain in the global material system are used. Cracking and crushing are controlled through normal strains, whereas shear is controlled through shear strain. Separate hysteretic rules are adopted for each mode of damage. A numerical analysis of masonry walls that are subject to cyclic loading has demonstrated that the use of explicit procedures in conjunction with the proposed model results in an acceptable accuracy when compared with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
17.
随着高墩大跨桥梁的广泛应用,其抗震问题也越来越突出。本文主要考虑轴压比、长细比的影响,进行了6个钢筋混凝土薄壁箱型高墩缩尺模型的双向拟静力试验,以及反复荷载作用下的非线性分析。研究表明:①钢筋混凝土薄壁箱型高墩柱在多维荷载共同作用下,主要发生典型的弯曲破坏,但剪切作用也不容忽视;②墩枉的破坏受到不同方向耦合作用的显著影响,尤其是抗弯刚度小的一侧受到的影响更大,较早就出现开裂,提前进入塑性发展阶段;③非线性有限元计算的滞回曲线、骨架曲线等与试验结果基本吻合;④建立了考虑轴压比、长细比影响的钢筋混凝土薄壁箱型高墩的双向荷载一位移恢复力模型,该模型基本能够反映钢筋混凝土薄壁箱型高墩的抗震性能,可供钢筋混凝土箱型高墩柱及高墩桥梁结构的抗震设计和动力计算参考。  相似文献   

18.
A three‐dimensional beam–truss model (BTM) for reinforced concrete (RC) walls that explicitly models flexure–shear interaction and accurately captures diagonal shear failures was presented in the first part of this two‐paper series. This paper extends the BTM to simulate RC slabs and coupled RC walls through slabs and beams. The inclination angle of the diagonal elements for coupled RC walls is determined, accounting for the geometry of the walls and the level of coupling. Two case studies validate the model: (1) a two‐bay slab–column specimen experimentally tested using cyclic static loading and (2) a five‐story coupled T‐wall–beam–slab specimen subjected to biaxial shake table excitation. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally measured response and observed damage. The five‐story specimen is characterized by diagonal shear failure at the bottom story of the walls, which is captured by the BTM. The BTM of the five‐story specimen is used to study the effects of coupling on shear demand for lightly reinforced RC coupled walls. The effect of mesh refinement and bar fracture of non‐ductile transverse reinforcement is studied. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In a companion paper two different modelling approaches have been described, operating at the meso‐scale of the fibre elements and at the micro‐scale of the finite element (FE) method. The aim of this paper is to explore the efficiency of these models in the pushover analysis for the seismic assessment of existing reinforced concrete (RC) structures. To this purpose a prototype reference structure, one of the RC shear walls designed according to the multi‐fuse concept and tested on shaking table for the CAMUS Project, is modelled at different levels of refinement. At the micro‐scale the reinforcement and anchorage details are described with increasing accuracy in separate models, whereas at the meso‐scale one single model is used, where each element represents a large part of the structure. Static incremental non‐linear analyses are performed with both models to derive a capacity curve enveloping the experimental results and to reproduce the damage pattern at the displacement level where failure is reached. The comparison between experimental and numerical results points out the strong and weak points of the different models inside the procedure adopted, and the utility of an integration of results from both approaches. This study confirms, even for the rather difficult case at study, the capability of the pushover in reproducing the non‐linear dynamic response, both at a global and a local level, and opens the way to the use of the models within a displacement‐based design and assessment procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
An analysis of the damage observed in 24 reinforced concrete (RC) columns tested under uniaxial and biaxial horizontal loading is presented. The test results show that for biaxial loading conditions specific damage occurs for lower drift demands when compared with the corresponding uniaxial demand (a reduction of 50–75 % was found). The damage distribution observed in each column is also analysed. No significant differences are found in the plastic hinge length for uniaxial and biaxial loading. The drift demands associated with each damage state are compared with reference values proposed in international guidelines. Finally, and based on the philosophy of the Park and Ang uniaxial damage index, two new expressions are proposed for the evaluation of damage in RC elements under biaxial loading. The results of the application of these expressions to the experimental results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号