首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
— A statistical fractal automaton model is described which displays two modes of dynamical behaviour. The first mode, termed recurrent criticality, is characterised by quasi-periodic, characteristic events that are preceded by accelerating precursory activity. The second mode is more reminiscent of SOC automata in which large events are not preceded by an acceleration in activity. Extending upon previous studies of statistical fractal automata, a redistribution law is introduced which incorporates two model parameters: a dissipation factor and a stress transfer ratio. Results from a parameter space investigation indicate that a straight line through parameter space marks a transition from recurrent criticality to unpredictable dynamics. Recurrent criticality only occurs for models within one corner of the parameter space. The location of the transition displays a simple dependence upon the fractal correlation dimension of the cell strength distribution. Analysis of stress field evolution indicates that recurrent criticality occurs in models with significant long-range stress correlations. A constant rate of activity is associated with a decorrelated stress field.  相似文献   

2.
空间光滑地震活动性模型中光滑函数的比较研究   总被引:2,自引:1,他引:1       下载免费PDF全文
徐伟进  高孟潭 《地震学报》2012,34(2):244-256
使用Frankel提出的基于空间光滑地震活动性模型的地震危险性分析方法,选择华南、华北、川滇3个地区的地震记录,比较分析了高斯、幂律和地震分形分布光滑函数3种光滑函数在不同地区的适用性.结果表明,使用交叉验证法可以为高斯光滑函数选取合适的相关距离c值,光滑得到的地震活动性模型能够真实反映研究区域的地震活动特征,根据活动性模型计算得出的峰值加速度(PGA)分布也符合人们对研究区域地震危险性的认识.幂律光滑函数适用于地震活动性较强的地区,且具有容易求取光滑参数的优点.光滑程度较低的幂律光滑函数不适用于地震活动性弱的地区,在该类地区应选择光滑程度较高的高斯光滑函数.地震分形分布光滑函数不适用于地震活动较强且地震活动强度差异较大的地区,其容易过分高估高震级地震对地震危险性的影响,而忽略了低震级地震对地震危险性的贡献.但对于地震活动较弱且地震活动强度差异较小的地区,可使用地震分形分布光滑函数,且同样具有容易求取光滑参数的优点.   相似文献   

3.
The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.  相似文献   

4.
The concept of self-organised criticality (SOC) has recently been suggested as a paradigm for the long-term behaviour of earthquakes, even though many of the currently-proposed models require some tuning of the state variables or local conservation rules to produce the universally-observed Gutenberg-Richter frequency-magnitude distribution witha b value near 1. For example, a systematic negative correlation is predicted between modelb values and the degree of conservation of local force after the slip of a single element in an elastic spring/block/frictional slider model. A similar relation is described here for a cellular automaton model with constitutive laws based on fracture mechanics. Such systems, although critical phenomena in the sense of producing order on all scales, are clearly not universal, and may not in general even be true examples of SOC. Nevertheless they adequately reproduce both the observed power-law (fractal or multifractal) scaling and its reported short-term fluctuation.We also present experimental and field evidence for similar systematic variations inb value with the degree of force conservation (expressed in terms of a normalised crack extension force) during subcritical crack growth involving the physical and chemical influence of pore fluids during a single cycle of failure both in tension and compression. We find that the level of conservation is strongly influenced by fluid-rock interaction under stress, allowing energy partition into processes such as: physico-chemical stress corrosion reactions; the dissolution and precipitation of mineral species on crack surfaces; and the purely mechnical phenomenon of dilatant hardening. All of these are known to occur in the Earth on a local scale, but few have been explicitly included in automaton models of seismicity. The implication is that over long time periods pore fluids may exert a strong physical and chemical influence on the universal state of SOC which the system evolves in a complex interplay of local feedback mechanisms keeping the system near criticality, perhaps most strikingly due to the valve action of faults. In the short term, crustal fluids might nevertheless be responsible for systematic local fluctuations about this average state.  相似文献   

5.
《Journal of Geodynamics》2003,35(1-2):173-189
The special type of intraplate microseismicity with swarm-like occurrence of earthquakes within the Vogtland/NW-Bohemian Region is analysed to reveal the nature and the origin of the seismogenic regime. The long-term data set of continuous seismic monitoring since 1962, including more than 26000 events within a range of about 5 units of local magnitude, provides an unique database for statistical investigations. Most earthquakes occur in narrow hypocentral volumes (clusters) within the lower part of the upper crust, but also single event occurrence outside of spatial clusters is observed. Temporal distribution of events is concentrated in clusters (swarms), which last some days until few month in dependence of intensity. Since 1962 three strong swarms occurred (1962, 1985/86, 2000), including two seismic cycles. Spatial clusters are distributed along a fault system of regional extension (Leipzig-Regensburger Störung), which is supposed to act as the joint tectonic fracture zone for the whole seismogenic region. Seismicity is analysed by fractal analysis, suggesting a unifractal behaviour of seismicity and uniform character of seismotectonic regime for the whole region. A tendency of decreasing fractal dimension values is observed for temporal distribution of earthquakes, indicating an increasing degree of temporal clustering from swarm to swarm. Following the idea of earthquake triggering by magma intrusions and related fluid and gas release into the tectonically pre-stressed parts of the crust, a steady increased intensity of intrusion and/or fluid and gas release might account for that observation. Additionally, seismic parameters for Vogtland/NW-Bohemia intraplate seismicity are compared with an adequate data set of mining-induced seismicity in a nearby mine of Lubin/Poland and with synthetic data sets to evaluate parameter estimation. Due to different seismogenic regime of tectonic and induced seismicity, significant differences between b-values and temporal dimension values are observed. Most significant for intraplate seismicity are relatively low fractal dimension values for temporal distribution. That observation reflects the strong degree of temporal earthquake clustering, which might explain the episodic character of earthquake swarms and support the idea of push-like triggering of earthquake avalanches by intruding magma.  相似文献   

6.
—Based on the original stress release model of seismicity proposed by Vere-Jones (1978), this paper has developed a stochastic coupled stress release model of time-dependent seismicity, which considers the earthquake interaction and stress transfer between different seismic subregions. As an example, the model is applied to a statistical analysis of the historical earthquake catalog with magnitude M ≥ 6.0 during the period from 1480 to 1996 in North China. According to the Akaike information criterion (AIC), the results show that the coupled stress release model is better than the original model, which demonstrates the existence of long-range correlations between different seismic subregions. We also apply both the stochastic (original and developed coupled) models to analyze the synthetic catalog produced by a cellular automata model, which is based on mechanics of a slide-spring-damper system to model the fault network. The stress release model provides a good fit to the synthetic regional stress, and the coupled stress release model provides an improvement in fit to the synthetic catalog over the original model.  相似文献   

7.
We explore fractal properties of two observed seismicity distributions prior to the 2003 M w 7.4 Colima, Mexico and 1992 M w 7.3 Landers, USA earthquakes, together with several mathematical fractal distributions and two non-fractal ones, in order to estimate minimum reliable sample sizes, determine whether fractality for observed seismicity is essentially different from random uniform distributions, and explore the possibility of extracting premonitory information from fractal characteristics of seismicity before large earthquakes. Sample sizes above 800 events for whole catalogs appear to be sufficient to maintain ordered multifractality and to yield dimension estimates that vary smoothly and reliably. Fractal estimates appear to be best for whole catalogs that include aftershocks. The fractal characteristics of spatial distributions of seismicity are essentially different from those of the uniform random distribution, which is the null hypothesis of a non-fractal distribution with minimum information. The fractal dimensions and afractality measures of seismicity distributions change with time and show distinctive behaviors associated with foreshocks and main events, although these behaviors are different for each example. Results suggest the possibility of a priori identification of foreshocks to large earthquakes. A combination of fractal dimension and afractality measures over time may be helpful in large earthquake premonitory studies.  相似文献   

8.
By complex analysis of GPS velocities, seismicity, fractal dimensions of the spatial distribution of seismic epicenters, focal mechanisms of the earthquakes, and stress state of the Earth’s crust, four seismic zones (Balaken-Zagatala, Sheki-Gabala, Shamakhy-Ismailly, and Absheron) are revealed within the southern slope of the Greater Caucasus. The suggested method can be used as a criterion in seismotectonic zoning; it could also be useful in the assessment of seismic hazards in the collision zones.  相似文献   

9.
—There is growing evidence that some proportion of large and great earthquakes are preceded by a period of accelerating seismic activity of moderate-sized earthquakes. These moderate earthquakes occur during the years to decades prior to the occurrence of the large or great event and over a region larger than its rupture zone. The size of the region in which these moderate earthquakes occur scales with the size of the ensuing mainshock, at least in continental regions. A number of numerical simulation studies of faults and fault systems also exhibit similar behavior. The combined observational and simulation evidence suggests that the period of increased moment release in moderate earthquakes signals the establishment of long wavelength correlations in the regional stress field. The central hypothesis in the critical point model for regional seismicity is that it is only during these time periods that a region of the earth’s crust is truly in or near a "self-organized critical" (SOC) state, such that small earthquakes are capable of cascading into much larger events. The occurrence of a large or great earthquake appears to dissipate a sufficient proportion of the accumulated regional strain to destroy these long wavelength stress correlations and bring the region out of a SOC state. Continued tectonic strain accumulation and stress transfer during smaller earthquakes eventually re-establishes the long wavelength stress correlations that allow for the occurrence of larger events. These increases in activity occur over longer periods and larger regions than quiescence, which is usually observed within the rupture zone of a coming large event. The two phenomena appear to have different physical bases and are not incompatible with one another.  相似文献   

10.
—?Microseismicity (M?M?M?M??6 were also monitored at a crustal movement monitoring station located several hundred meters from the veins. It was found that the opening of the vertical ore veins primary led to significant strain and tilt, but not to seismicity, because the delay and the longer duration of the seismicity were significant. Most seismic events involve thrusting mechanisms that are consistent with the present stress state of E-W-oriented tectonic compression, but are not consistent with the opening of the deepest ore vein. Interstingly, all the events within a few months of the heavy rainfall occurred near the faults that offset the deepest ore veins, wheareas all those events located away from the deepest ore veins occurred many months after the heavy rainfall. Consequently, the delayed diffusion of water appears to have played a dominant role in reducing rock strength, which led to seismicity in the Ikuno mine.  相似文献   

11.
丽江7.0级地震前地震分形异常   总被引:2,自引:2,他引:2  
石绍先  邓志辉 《地震研究》1997,20(1):132-137
本提供了丽江7.0级地震前滇西北地震活动空间容量维、关联维、信息熵十分显的异常图像;这些异常是在大震孕震区形成、应变释放加速阶段之后出现的,恰好揭示了源区、近源区大释放前的非线性变化过程。这与1965年以来云南及邻区8组大震前地震分形研究的结论完全一致;进一步说明地震活动分形异常对地震孕育的短临阶段具有重要的指示意义。  相似文献   

12.
The rapid release of strain energy is an important phenomenon leading to seismic events or rock failures during the excavation of deep rock.Through theoretical analysis of strain energy adjustment during blasting and mechanical excavation,and the interpretation of measured seismicity in the Jin-Ping Ⅱ Hydropower Station in China,this paper describes the characteristics of energy partition and induced seismicity corresponding to different energy release rates.The theoretical analysis indicates that part of the strain energy will be drastically released accompanied by violent crushing and fragmentation of rock under blast load,and this process will result in seismic events in addition to blasting vibration.The intensity of the seismicity induced by transient strain energy release highly depends on the unloading rate of in-situ stress.For mechanical excavation,the strain energy,which is mainly dissipated in the deformation of surrounding rock,releases smoothly,and almost no seismic events are produced in this gradual process.Field test reveals that the seismic energy transformed from the rock strain energy under high stress condition is roughly equal to that coming from explosive energy,and the two kinds of vibrations superimpose together to form the total blasting excavation-induced seismicity.In addition,the most intense seismicity is induced by the cut blasting delay; this delay contributes 50% of the total seismic energy released in a blast event.For mechanical excavation,the seismic energy of induced vibration(mainly the low intensity acoustic emission events or mechanical loading impacts),which accounts only for 1.5‰ of that caused by in-situ stress transient releasing,can be ignored in assessing the dynamic response of surrounding rock.  相似文献   

13.
Several studies on the scaling properties of the near-Earth magnetosphere and auroral phenomena are reviewed. These studies employ modern analysis techniques that include fractal, multifractal, wavelet, wavelet bicoherence, and sign-singularity analyses as well as cellular automaton simulations of sandpile and avalanches. The results provide strong evidence for the multiscale, cross-scale coupling, and reorganization nature of auroral and magnetospheric phenomena, suggesting the possibility that the magnetosphere is in a forced and/or self organized critical state. Signatures of inverse cascade are found in magnetic fluctuations in current disruption events, which may indicate large-scale substorm features such as substorm current wedge and plasmoid may be evolved from small-scale plasma turbulence structures. Insights gained from these studies help to discriminate the existing competing substorm models. The multiscale properties of magnetospheric substorms are consistent with substorm models with intrinsic multiscale processes and not with substorm models with only a macroscopic process.  相似文献   

14.
High energy release during seismic events induced by mining operation is one of the major dangers perturbing production in underground mines. In this work, temporal changes of seismic event parameters for one of the Rudna Mine (Poland) panels are investigated. The study aim was to find whether the temporal clustering of smaller events in different parameters can be observed before and after the high energy events (Ml?≥?3) in the mining panel. The method chosen for analysis was the study of temporal variation of fractal dimension of the seismic events parameter sets composed from: the interevent epicentral distance (dr), logarithm of seismic energy (lE), and interevent energy coefficient (dlE), which is the absolute difference between logarithms of energy of two consecutive events. Temporal variations study was performed in equivalent dimension (ED) space. The transformation of the seismic source parameters into ED space allowed to estimate and compare the temporal changes of the fractal dimension of different parameter spaces using the same method—correlation fractal dimension, and then easily compare the obtained temporal changes of fractal dimension of different parameter sets. The effect of grouping is expressed by decrease of fractal dimension, which is connected with the similarity of events parameter values. The temporal changes of the fractal dimension of seismicity before the strong induced events would indicate some initiation phase of the process leading to the high energy release. In the case of the studied Rudna Mine panel, the temporal behavior of the fractal dimension values in different parameter spaces before seismic events showed significant changes before three out of four events with CLVD dominant source mechanisms.  相似文献   

15.
Prediction of magnitude of the largest potentially induced seismic event   总被引:1,自引:0,他引:1  
We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.  相似文献   

16.
—Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (t f?t) m , where t f is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks. The subcritical crack growth approach developed to describe deformation on a crack prior to the occurrence of dynamic rupture predicts great variability and low asymptotic values of the exponent m that are not compatible with observed ASR phases. Statistical physics studies assuming that system-size failures in a deforming region correspond to critical phase transitions predict establishment of long-range correlations of dynamic variables and power-law statistics before large events. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3-D elastic half space, we show that large model earthquakes are associated with nonrepeating cyclical establishment and destruction of long-range stress correlations, accompanied by nonstationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovsky et al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1-D case that the employed damage rheology leads to a singular power-law equation for strain proportional to (t f?t)?1/3, and a nonsingular power-law relation for cumulative Benioff strain proportional to (t f?t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power-law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = ?1/3, the nonsingular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not. The results suggest that observations of moderate and large events contain two complementary end-member predictive signals on the time of future large earthquakes. In portions of seismicity following the characteristic earthquake distribution, such information exists directly in the associated quasi-periodic temporal distribution of large events. In portions of seismicity having broad frequency-size statistics with random or clustered temporal distribution of large events, the ASR phases have predictive information. The extent to which natural seismicity may be understood in terms of these end-member cases remains to be clarified. Continuing studies of evolving stress and other dynamic variables in model calculations combined with advanced analyses of simulated and observed seismicity patterns may lead to improvements in existing forecasting strategies.  相似文献   

17.
Accelerating strain energy released by the generation of intermediate magnitude preshocks in a broad (critical) region, and decelerating energy released in a narrower (seismogenic) region, is considered as a distinct premonitory pattern useful in research for intermediate-term earthquake prediction. Accelerating seismicity in the broad region is satisfactorily interpreted by the critical earthquake model and decelerating seismicity in the narrower region is attributed to stress relaxation due to pre-seismic sliding. To facilitate the identification of such patterns an algorithm has been developed on the basis of data concerning accelerating and decelerating preshock sequences of globally distributed already occurred strong mainshocks. This algorithm is applied in the present work to identify regions, which are currently in a state of accelerating seismic deformation and are associated with corresponding narrower regions, which are in a state of decelerating seismic deformation in California. It has been observed that a region which includes known faults in central California is in a state of decelerating seismic strain release, while the surrounding region (south and north California, etc.) is in a state of accelerating seismic strain release. This pattern corresponds to a big probably oncoming mainshock in central California. The epicenter, magnitude and origin time, as well as the corresponding model uncertainties of this probably ensuing big mainshock have been estimated, allowing a forward testing of the model's efficiency for intermediate-term earthquake prediction.  相似文献   

18.
We analyse the seismic catalogue of the local earthquakes which occurred at Somma-Vesuvius volcano in the past three decades (1972–2000). The seismicity in this period can be described as composed of a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analysis of the b value in the whole period evidences a well-defined pattern, with values of b progressively decreasing, from about 1.8 at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identify a substructure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for most of the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma. The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro-earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit the outlining of any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a generally increasing trend in the seismic activity in the volcanic system and by a significant volumetric component of recent major events, thus posing serious concern for a future evolution towards eruptive activity.  相似文献   

19.
Stress interactions and sliding characteristics of faults with random fractal waviness in a purely elastic medium differ both qualitatively and quantitatively from those of faults with planar surfaces. With nonplanar fault models, solutions for slip diverge as resolution of the fractal features increases, and the scaling of fault slip with fault rupture dimension becomes nonlinear. We show that the nonlinear scaling of slip and divergence of solutions arise because stresses from geometric interactions at irregularities along nonplanar faults grow with increasing slip and produce backstresses that progressively impede slip. However, in real materials with finite strength, yielding will halt the growth of the interaction stresses, which will profoundly affect slip of nonplanar faults. We infer that in the brittle seismogenic portion of the Earth’s crust, off-fault yielding occurs on pervasive secondary faults. Predicted rates of stress relaxation with distance from major faults with random fractal roughness follow a power-law relationship that is consistent with reported clustering of background seismicity up to 15 kilometers from faults.  相似文献   

20.
影响地震活动性因素的非均匀细胞自动机模拟研究   总被引:1,自引:0,他引:1  
李锰  杨峰 《内陆地震》2011,25(3):205-214
基于细胞自动机模型,构建了由81×81个细胞单元组成非均匀二维单断层介质样本,研究了断层结构细观非均匀性以及相关模型参数变化对模拟输出结果和强度分布特征的影响。研究结果表明:结构非均匀性是影响地震活动性的控制性参量,随着非均匀程度的增强,地震事件数量增多,震级分布变得越来越均匀,破裂演化模式由相对"脆性"向"塑性"变化;介质结构的初始条件和应力加载的随机性对地震活动演化过程基本不产生影响,此外,应力降分配系数减小使b值主体线性段向大震级延伸;随着局部摩擦损耗系数增大,模拟地震事件的数量有所增加,大震级事件数量和震级衰减增强b,值主体线性区间变窄,使断层的变形破坏方式由相对"脆性"向"塑性"变化。这些对理解孕震过程的复杂性是有帮助的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号