首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multifractal analysis of seismicity of three large earthquakes in Chile is made: the Central Zone 1985 (M W = 8.0), Antofagasta 1995 (M W = 8.1), and Maule 2010 (M W = 8.8) earthquakes. The analysis shows that the fractal dimension spectrum D q decreases with time before an earthquake. This fact suggests that the spatial distribution of seismic events could form a cluster before a main shock.  相似文献   

2.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

3.
—The 1952 Kamchatka earthquake is among the largest earthquakes of this century, with an estimated magnitude of M w = 9.0. We inverted tide gauge records from Japan, North America, the Aleutians, and Hawaii for the asperity distribution. The results show two areas of high slip. The average slip is over 3 m, giving a seismic moment estimate of 155×1020Nm, or M w = 8.8. The 20th century seismicity of the 1952 rupture zone shows a strong correlation to the asperity distribution, which suggests that the large earthquakes (M > 7) are controlled by the locations of the asperities and that future large earthquakes will also recur in the asperity regions.  相似文献   

4.
In this article, we review the general characteristics of seismicity in and around China and the overall statistics of earthquake damage in 2021, focusing on several significant events and related scientific topics. Among them, the largest event is the MS 7.4 Madoi earthquake in Qinghai Province, northwest China. The event marks another MS ?≥ ?7 earthquake occurring near the boundary of the Bayan Har Block that has ended a remarkable quiescence of the MS ?≥ ?7 earthquakes within the Chinese mainland. In addition, the MS 6.4 Yangbi earthquake in Yunnan Province, southwest China draws the most attention because of its abundant foreshocks, which are well recorded by the densely distributed seismic stations in the surrounding regions. Regarding this event, we review several recent publications focusing on the Gutenberg-Richter b-value change and the physical mechanism of foreshocks associated with this sequence. The MS 6.0 Luxian earthquake in Sichuan Province, southwest China has caused serious damage with a relatively low magnitude, partly because the focal depth of the mainshock is relatively shallow (3.5 ?km). It is another strong earthquake occurring within the southeast Sichuan basin with low historical seismicity yet has increased significantly since 2015, probably due to shale gas development and associated hydraulic fracturing.  相似文献   

5.
— An algorithm recently developed by RUNDLE et al. (2002) to find regions of anomalous seismic activity associated with large earthquakes identified the location of an M w = 5.6 earthquake near Calexico, Mexico. In this paper we analyze the regional seismicity before this event, and a nearby M w = 5.7 event, using time-to-failure algorithms developed by BOWMAN et al. (1998) and BOWMAN and KING (2001a,b). The former finds the radius of a circular region surrounding the epicenter that optimizes the time-to-failure acceleration of seismic release. The latter optimizes acceleration based on the expected stress accumulation pattern for a dislocation source. Both methods found a period of accelerating seismicity in an optimal region, the size of which agrees with previously proposed scaling relations. This positive result suggests that the Rundle algorithm may provide a useful technique to identify regions of accelerating seismicity, which can then be analyzed using signal optimization time-to-failure techniques.  相似文献   

6.
Earthquakes in Iran and neighbouring regions are closely connected to their position within the geologically active Alpine-Himalayan belt. Modern tectonic activity is forced by the convergent movements between two plates: The Arabian plate, including Saudi Arabia, the Persian Gulf and the Zagros Ranges of Iran, and the Eurasian plate. The intensive seismic activity in this region is recorded with shallow focal depth and magnitude rising as high as Mw = 7.8. The study region can be attributed to a highly complex geodynamic process and therefore is well suited for multifractal seismicity analysis. Multifractal analysis of earthquakes (mb ≥ 3) occurring during 1973 – 2006 led to the detection of a clustering pattern in the narrow time span prior to all the large earthquakes: Mw = 7.8 on 16.9.1978; Mw = 6.8 on 26.12.2003; Mw = 7.7 on 10.5.97. Based on the spatio-temporal clustering pattern of events, the potential for future large events can be assessed. Spatio-temporal clustering of events apparently indicates a highly stressed region, an asperity or weak zone from which the rupture propagation eventually nucleates, causing large earthquakes. This clustering pattern analysis done on a well-constrained catalogue for most of the fault systems of known seismicity may eventually aid in the preparedness and earthquake disaster mitigation.  相似文献   

7.
The Kanto earthquake (M=7.9) that occurred along the Sagami Trough in the Sagami Bay on 1 September 1923 was one of the most disastrous earthquakes in Japanese history. The Kanto area includes Metropolitan Tokyo and Yokohama which are densely populated, and hence it has been a matter of great concern, from the viewpoints of earthquake prediction and disaster prevention, whether or not the 1923 Kanto earthquake was preceded by precursory seismicity. A study using the most complete lists of earthquakes catalogued recently by Utsu and the Japan Meteorological Agency reveals that seismic activity in the Kanto area was appreciably higher before and after the Kanto earthquake, and that the Kanto earthquake was preceded by a sequence of anomalous seismic activity, quiescence, and foreshocks. Such higher activity before and after the Kanto earthquake is contrasted with low seismicity during the recent 30-year period. A model is proposed to explain the precursory seismic activity, subsequent quiescence, and foreshocks for the Kanto earthquake. In the model, the transition from precursory seismic activity to quiescence is ascribed to time-dependent fracture due to stress-aided corrosion. Foreshocks are related to an acceleration of premonitory slip shortly before the mainshock slip.  相似文献   

8.
We employ a computationally efficient fault system earthquake simulator, RSQSim, to explore effects of earthquake nucleation and fault system geometry on earthquake occurrence. The simulations incorporate rate- and state-dependent friction, high-resolution representations of fault systems, and quasi-dynamic rupture propagation. Faults are represented as continuous planar surfaces, surfaces with a random fractal roughness, and discontinuous fractally segmented faults. Simulated earthquake catalogs have up to 106 earthquakes that span a magnitude range from ~M4.5 to M8. The seismicity has strong temporal and spatial clustering in the form of foreshocks and aftershocks and occasional large-earthquake pairs. Fault system geometry plays the primary role in establishing the characteristics of stress evolution that control earthquake recurrence statistics. Empirical density distributions of earthquake recurrence times at a specific point on a fault depend strongly on magnitude and take a variety of complex forms that change with position within the fault system. Because fault system geometry is an observable that greatly impacts recurrence statistics, we propose using fault system earthquake simulators to define the empirical probability density distributions for use in regional assessments of earthquake probabilities.  相似文献   

9.
The size of major tsunamigenic earthquakes which occurred in the Japan Sea is quantified on the basis of seismic and tsunamigenic source parameters. The tsunami magnitude Mt is determined from the instrumental tsunami-wave amplitudes. The Mt values thus obtained are on average 0.2 units larger than the values of moment magnitude Mw, though the Mt scale has originally been adjusted to agree with Mw. Moreover, the volume of displaced water at the source is on average 2.3 times as large as that for the Pacific events with a comparable Mw. Nevertheless, the observed height of the sea-level disturbance at the source is found consistent with the amount of crustal deformation computed for the seismic fault models. These results indicate that the tsunami source potential itself is large for Mw in comparison with the Pacific events. The large source potential is explained in terms of the effective difference both in the rigidity of the source medium and in the geometry of the fault motion. For the Japan Sea events, the Mt scale still provides the physical measure of the tsunami potential, and Mt minus 0.2 corresponds to Mw. This predicts that the maximum amplitude of tsunami waves from Japan Sea earthquakes is at least two times as large as that from Pacific earthquakes with a comparable Mw.  相似文献   

10.
In this paper changes in focal mechanisms, parameters of wave spectra, and stress drops for the M S=5.0 foreshock and M S=6.0 mainshock in February 2001 in Yajiang County, Sichuan, and seismicity in epicentral region are studied. Comparison of focal mechanisms for the Yajiang earthquakes with distribution patterns of aftershocks, the nodal plane I, striking in the direction of NEN, of the Yajiang M=5.0 event is chosen as the faulting plane; the nodal plane II, striking in the direction of WNW, of the M=6.0 event as the faulting plane. The strikes of the two faulting planes are nearly perpendicular to each other. The level of stress drops in the epicentral region before the occurrence of the M=6.0 earthquake increases, which is consistent with increase of seismicity in the epicentral region. The rate decay of the Yajiang earthquake sequence, changes in wave spectra for foreshocks and aftershocks, and focal mechanisms are complex.  相似文献   

11.
R/S analysis is used in this work to investigate the fractal correlations in terms of the Hurst exponent for the 1998–2011 seismicity data in Southern Mexico. This region is the most seismically active area in Mexico, where epicenters for severe earthquakes (e.g., September 19, 1985, Mw = 8.1) causing extensive damage in highly populated areas have been located. By only considering the seismic events that meet the Gutenberg–Ritcher law completeness requirement (b = 0.97, MGR = 3.6), we found time clustering for scales of about 100 and 135 events. In both cases, a cyclic behavior with dominant spectral components at about one cycle per year is revealed. It is argued that such a one-year cycle could be related to tidal effects in the Pacific coast. Interestingly, it is also found that high-magnitude events (Mw  6.0) are more likely to occur under increased interevent correlations with Hurst exponent values H > 0.65. This suggests that major earthquakes can occur when the tectonic stress accumulates in preferential directions. In contrast, the high-magnitude seismic risk is reduced when stresses are uniformly distributed in the tectonic shell. Such cointegration between correlations (i.e., Hurst exponent) and macroseismicity is confirmed for spatial variations of the Hurst exponent. In this way, we found that, using the Hurst exponent standpoint, the former presumed Michoacan and the Guerrero seismic gaps are the riskiest seismic zones. To test this empirical finding, two Southern Mexico local regions with large earthquakes were considered. These are the Atoyac de Alvarez, Guerrero (Mw = 6.3), and Union Hidalgo, Oaxaca (Mw = 6.6), events. In addition, we used the Loma Prieta, California, earthquake (October 17, 1989, Mw = 6.9) to show that the high-magnitude earthquakes in the San Andreas Fault region can also be linked to the increments of determinism (quantified in terms of the Hurst exponent) displayed by the stochastic dynamics of the interevent period time series. The results revealed that the analysis of seismic activity by means of R/S analysis could provide further insights in the advent of major earthquakes.  相似文献   

12.
The catalogue by Grünthal et al. (J Seismol 13:517?C541, 2009a) of earthquakes in central, northern, and north-western Europe with M w????3.5 (CENEC) has been expanded to cover also southern Europe and the Mediterranean area. It has also been extended in time (1000?C2006). Due to the strongly increased seismicity in the new area, the threshold for events south of the latitude 44°N has here been set at M w????4.0, keeping the lower threshold in the northern catalogue part. This part has been updated with data from new and revised national and regional catalogues. The new Euro-Mediterranean Earthquake Catalogue (EMEC) is based on data from some 80 domestic catalogues and data files and over 100 special studies. Available original M w and M 0 data have been introduced. The analysis largely followed the lines of the Grünthal et al. (J Seismol 13:517?C541, 2009a) study, i.e., fake and duplicate events were identified and removed, polygons were specified within each of which one or more of the catalogues or data files have validity, and existing magnitudes and intensities were converted to M w. Algorithms to compute M w are based on relations provided locally, or more commonly on those derived by Grünthal et al. (J Seismol 13:517?C541, 2009a) or in the present study. The homogeneity of EMEC with respect to M w for the different constituents was investigated and improved where feasible. EMEC contains entries of some 45,000 earthquakes. For each event, the date, time, location (including focal depth if available), intensity I 0 (if given in the original catalogue), magnitude M w (with uncertainty when given), and source (catalogue or special study) are presented. Besides the main EMEC catalogue, large events before year 1000 in the SE part of the investigated area and fake events, respectively, are given in separate lists.  相似文献   

13.
Data on the time moments and numbers of weak earthquakes (M ≥ 0) are analyzed in five regions of Central Asia where long-term extensive instrumental observations of seismicity were conducted. Spectra of time moments of seismic events were calculated in the range of periods from 1 to 48 h with a step of half an hour. The time variations in the numbers of these earthquakes were also calculated in windows of 4 to 48 h wide with a summation step of 1 h. The presence of significant high-quality spectral extrema at periods of 24 and 12 h is established for all catalogs used, and less significant extrema at a period of 8 h are established for some catalogs. These periodicities are observed in the analysis of weak earthquakes with M < 2.2 (K < 8) and are virtually absent for stronger seismic events. It is shown that lunisolar tides have no appreciable gravitational effect on the observed variations in seismic emission. Daily variations in the actual sensitivity of the observation network due to the daytime increase in the noise level as a factor responsible for the observed diurnal periodicity raise doubts.  相似文献   

14.
The new scale Mt of tsunami magnitude is a reliable measure of the seismic moment of a tsunamigenic earthquake as well as the overall strength of a tsunami source. This Mt scale was originally defined by Abe (1979) in terms of maximum tsunami amplitudes at large distances from the source. A method is developed whereby it is possible to determine Mt at small distances on the basis of the regional tsunami data obtained at 30 tide stations in Japan. The relation between log H, maximum amplitude (m) and log Δ, a distance of not less than 100 km away from the source (km) is found to be linear, with a slope close to 1.0. Using three tsunamigenic earthquakes with known moment magnitudes Mw, for calibration, the relation, Mt = log H + log Δ + D, is obtained, where D is 5.80 for single-amplitude (crest or trough) data and 5.55 for double-amplitude (crest-to-trough) data. Using a number of tsunami amplitude data, Mt is assigned to 80 tsunamigenic earthquakes that occurred in the northwestern Pacific, mostly in Japan, during the period from 1894 to 1981. The Mt values are found to be essentially equivalent to Mw for 25 events with known Mw. The 1952 Kamchatka earthquake has the largest Mt, 9.0. Of all the 80 events listed, at least seven unusual earthquakes which generated disproportionately-large tsunamis for their surface-wave magnitude Ms are identified from the relation. From the viewpoint of tsunami hazard reduction, the present results provide a quantitative basis for predicting maximum tsunami amplitudes at a particular site.  相似文献   

15.
在模糊集理论与分形理论的基础上,引进了模糊分维的概念;给出了模湖容量维D0与模糊关联维D2的定义与确定方法;讨论了模糊分维与常用的分维(清晰分维)的关系.给出了模糊分维在地震研究中的应用结果: 1.根据模糊容量维D0随时间的上升趋势变化,可以划分出大地震活动的高潮期;由模糊容量维D0与模糊关联维D2随时间变化的曲线,可以分析识别大地震前的中长期前兆异常. 2.根据模糊容量维D0随空间和时间的变化,可以划分出未来大震所在的地区,并可发现大震前数年D0呈现增大或减小的趋势. 3.根据前兆数据的模糊时间分维D0随时间的变化,可以发现大地震的短期前兆异常.  相似文献   

16.
This work generalizes the results of tomographic imaging performed by the authors for epicentral zones. Seismic events in North Africa (the M w = 5.8 earthquake of 1985 near the town of Constantine), eastern Anatolia (the Erzincan M w = 6.7 earthquake of 1992), the Lesser and Greater Caucasus (the 1988 Spitak M w = 6.8 and the 1991 Racha M w = 7.0 earthquakes), and northern Sakhalin (the 1995 Neftegorsk M w = 7.1 earthquake) are examined. It is shown how various morphokinematic types of active faults differ in the resulting tomographic images at various depths. A classification of tomographic images of strong earthquake source zones is proposed in accordance with the rank of their generating faults. The sources of the Spitak, Racha, and Erzincan earthquakes are confined to large boundary faults separating tectonic zones. Lower velocity bands are revealed in the tomographic images, and low velocity “pockets” 1–2 km or somewhat more in width penetrating to a depth of up to 15 km are observed near the fault zones. The Constantine and Neftegorsk earthquakes were generated by faults of a lower rank. The source zones of these events are imaged tomographically as narrow gradient zones.  相似文献   

17.
We discuss seismicity characteristics in the source zones of two great earthquakes: the December 26, 2004 Sumatra (Mw = 9.0) and the November 14, 2001 Kunlun (Mw = 7.8) events. Ring structures of low magnitude seismicity have been forming prior to these earthquakes for several decades. We studied the short period shear-wave attenuation field in the area of these ring structures. The method we used is based on the analysis of the rate of attenuation for the early Sn and Lg codas to detect attenuation inhomogeneities in the uppermost mantle. We show that the ring structures have comparatively high attenuation of shear waves compared with the crustal volumes inside the rings. The fact that there is no recent volcanism in the area of the seismicity rings shows that this effect is due to a high content of free fluids in the uppermost mantle. Proceeding by analogy with our results, we identified a zone in northern Tien Shan that is anomalous for these parameters; the zone may be related to the precursory process of a large earthquake. We discuss the geodynamic mechanisms that may be responsible for fluid concentration in the seismicity rings.  相似文献   

18.
Temporal distribution of earthquakes with M w > 6 in the Dasht-e-Bayaz region, eastern Iran has been investigated using time-dependent models. Based on these types of models, it is assumed that the times between consecutive large earthquakes follow a certain statistical distribution. For this purpose, four time-dependent inter-event distributions including the Weibull, Gamma, Lognormal, and the Brownian Passage Time (BPT) are used in this study and the associated parameters are estimated using the method of maximum likelihood estimation. The suitable distribution is selected based on logarithm likelihood function and Bayesian Information Criterion. The probability of the occurrence of the next large earthquake during a specified interval of time was calculated for each model. Then, the concept of conditional probability has been applied to forecast the next major (M w > 6) earthquake in the site of our interest. The emphasis is on statistical methods which attempt to quantify the probability of an earthquake occurring within a specified time, space, and magnitude windows. According to obtained results, the probability of occurrence of an earthquake with M w > 6 in the near future is significantly high.  相似文献   

19.
This paper presents the review of the experience in applying the approach based on the limiting distributions of the extreme value theory (the generalized Pareto distribution, GPS, and generalized extreme value distribution, GEV) for deriving the distributions of maximal magnitudes and related ground accelerations from the earthquakes on the future time intervals of a given duration. The results of analyzing the global and regional earthquake catalogs and the ground peak accelerations during the earthquakes are described. It is shown that the magnitude of the strongest possible earthquake M max (and analogous characteristics for other types of data), which is often used in seismic risk assessment, is potentially unstable. We suggest a stable alternative for M max in the form of quantiles Q q (τ) of the maximal possible earthquake, which could occur during the future time interval of length τ. The quantity of the characteristic maximal event M c, which has been introduced in our previous publications, is another helpful robust scalar parameter. All the cases of approximation of the tails of empirical distributions, which were studied in our works, turned out to be finite (bounded); however, the rightmost point of these distributions, M max, is often poorly detectable and unstable. Therefore, the M max parameter has a low practical value.  相似文献   

20.
Ergodicity is a behavior generally limited to equilibrium states and is here defined as the equivalence of ensemble and temporal averages. In recent years, effective ergodicity is identified in simulated earthquakes generated by numerical fault models and in real seismicity of natural fault networks by using the Thirumalai-Mountain metric. Although the effective ergodicity is already reported for Taiwanese seismicity, an immediate doubt is the unrealistic gridded sizes for discretizing the seismic data. In this study, we re-examined the effective ergodicity in Taiwanese seismicity by using reasonable gridded sizes which corresponded with the location errors in the real earthquake catalogue. Initial time and magnitude cut-off were examined for the validity of ergodic behavior. We found that several subsets extracted from Taiwanese seismicity possessed effectively ergodic intervals and all terminations of these ergodic intervals temporally coincided with the occurrences of large earthquakes (M L < 6.5). We thus confirm the ergodicity in the crustal seismicity by using the Thirumalai-Mountain metric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号