首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
地震区划原则和方法的研究——以华北地区为例.   总被引:9,自引:0,他引:9       下载免费PDF全文
时振梁  鄢家全 《地震学报》1991,13(2):179-189
本文基于对我国华北地区地震活动在时间和空间不均匀分布的认识,吸收了近20年来地震预测方面的科研成果,采用目前国际通用的地震危险性概率分析方法,通过对华北区划的试验,对地震区划的原则和方法提出了如下改进: 1.以地震带作为地震活动性参数的统计单元.引入地震活动趋势估计因素,评定表征地震活动水平的年平均发生率,以使区划结果同预测未来时间段地震活动水平相适应; 2.采用按震级挡次分配各潜在震源区的年平均发生率,可以合理地评估高震级地震的危险程度; 3.采用以震级挡次为条件概率的空间分布函数,刻画地震带内各潜在震源区之间发生相应震级挡次地震的相对危险程度,使区划结果更好地反映地震活动在时间和空间上不均匀性分布的特点; 4.在地震危险性分析计算中,引入了方向性函数项,使得分析模型更接近我国地震震源的实际情况.   相似文献   

2.
To actually reflect the seismic temporal-spatial inhomogeneity of intra continental strong earthquakes of North China in seismic hazard analysis, several seismological and geological characteristics have been selected and quantized to describe the seismicity features in time and space of every magnitude interval with the thought of dividing the interesting magnitude range into several intervals and using of spatial probability distribution function. A component analysis method with orthogonal transformation is introduced to avoid the repeated use of the same element and the subjective effects in determining the annual earthquake occurrence rates of earthquake. By passing synthetic fuzzy judgement on the nonintercorrelated new characteristics, the annual occurrence rates of every magnitude interval of each potential source area are obtained associated with the adjustments of earthquake reducing process after the occurrence ofM>7 quake. An intensity map of the Beijing-Tianjin-Zhangjiakou area is calculated as an example which shows a close coincidence with the seismic temporal-spatial inhomogeneity of North China. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 496–504, 1991.  相似文献   

3.
This paper summarizes seismic and rockburst research activities related to South African deep-level gold mines over the period 1983 to 1987. It covers continued research in directions that were considered in the Seismicity in Mines Symposium in 1982 as well as in several new areas of research. Five broad areas are identified:
  1. Seismic data acquisition and processing. Improved seismic systems are being developed. Velocity models related to known stratigraphy are being used to provide more accurate estimates of seismic locations.
  2. Source mechanisms and near-source effects on seismic wave transmission. This work provides fundamental insights into seismicity and rock behaviour and is being applied in rockburst prediction research.
  3. Mine layouts. Excess shear stress is being investigated as a design parameter by analyzing mining configurations and resultant seismicity. In addition, better understanding of the behaviour of highly stressed remnants and pillars is also being obtained from seismic studies.
  4. Strong ground motion studies. Evaluation of the performance of support elements, including recently developed backfill materials, requires better knowledge of ground motion around underground excavations during seismic events and rockbursts.
  5. Rockburst prediction and control. Rockburst prediction research continues with some reported success. In addition, the feasibility of actively triggering fault slip or conditioning the rock ahead of the stope face to ameliorate the rockburst hazard is currently being investigated.
  相似文献   

4.
The Ridracoli Dam has been operating since 1981. Around the reservoir ISMES installed and operated for 10 years a seismic network, now reduced to a 3-D station. Earthquakes were recorded with completeness from magnitude 0.8 onwards. In the same period, all the parameters relevant to the dam and the environment were measured. This provided a complete data base for RIS studies, unique in its kind in Italy. The main findings of the analyses performed are the following:
  1. The filling of the reservoir has not influenced the seismicity of the area for most significant events (M L>3.5).
  2. Lesser seismicity around the reservoir seems to be correlated with water level in the reservoir, but also shows to be dependent on regional seismicity.
  3. b value shows a slight increase with time. This may indicate an increase in rock fracturing, which is known to precede the disappearing of Type II RIS.
  相似文献   

5.
确定潜在震源区地震年平均发生率的方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
雷建成  时振梁 《地震学报》1991,13(4):496-504
为了在地震危险性分析方法中,较好地反映大陆内部地震活动的时空不均匀性,按照震级分档和空间概率分布函数的思路,本文选取并量化了多个地震、地质特征,以描述各震级档地震活动在时间上和空间上的性质.为避免同一因素的重复使用和主观作用的介入,文中引入了分量分析方法对特征进行正交变换.对变换得到的互不相关的新特征进行模糊综合评判,再结合七级以上强震发生后的减震作用,确定了各潜在震源区各震级档的地震年平均发生率作为例子,试算了京-津-唐-张地区的地震烈度区划图.该例子说明,本文的分析方法,不仅能反映华北地区地震活动的时空不均匀性,还避免了特征量的重复使用和专家判断的影响   相似文献   

6.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

7.
Liparitic volcanism is a typical feature of the orogenic phase giving rise to the Kazakhstan, Middle Asia and Caucasus folded systems. The main characteristics of the liparitic volcanism common to these three regions are the following:
  1. Geo-structural zonation of the volcanic structures.
  2. Dismembered Moho surface within the volcanic structures.
  3. Synchronous, yet independent evolution of liparitic and andesitic volcanisms.
  4. Ignimbritic character of the liparitic volcanism.
  5. Lateral petrochemical zonation with some features common to the liparitic and andesitic rock series.
Geo-structural and petrochemical zonations are likely governed in the regions studied by a deep-seated plutonic body.  相似文献   

8.
A modified formula of the cumulative frequency-magnitude relation has been formulated and tested in a previous paper by the authors of this study. Based on the modified relationship, the following reoccurrence formulas have been obtained.
  1. For the ‘T-years period’ larger earthquake magnitude,M T $$M_T = \frac{1}{{A_3 }}ln\frac{{A_2 }}{{(1/T) + A_1 }}.$$
  2. For the value of the maximum earthquake magnitude, which is exceeded with probabilityP inT-years period,M PT $$M_{PT} = \frac{{ln(A_2 .T)}}{{A_3 }} - \frac{{ln[A_1 .T - ln(1 - P)]}}{{A_3 }}.$$
  3. For the probability of occurrence of an earthquake of magnitudeM in aT-years period,P MT $$P_{MT} = 1 - \exp [ - T[ - A_1 + A_2 \exp ( - A_3 M)]].$$
The above formulas provide estimates of the probability of reoccurrence of the largest earthquake events which are significantly more realistic than those based on the Gutenberg-Richter relationships; at least for numerous tested earthquake samples from the major area of Greece.  相似文献   

9.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

10.
Microearthquake digital data collected at Campi Flegrei during the recent (1982–1985) ground uplift episode have been analyzed in order to infer source and medium seismic properties. The main results obtained from these analyses are:
  1. Hypocenter distribution and the size of the seismic zone do not change with time and do not depend on the ground uplift rate. Events occurred clustered in time with no simple causal relations between the cluster occurrences and their energy.
  2. Anelastic attenuation does not depend strongly on frequency, showing a constant pattern at high frequencies. The observed values of low and high frequency attenuation, due to the short source receiver distances, do not seriously affect the spectral content of signals radiated by the sources.
  3. A constant Brune stress drop pattern (~4–5 bars) as a function of seismic moment is observed. This indicates that the manner of fracturing is almost independent on magnitude of earthquakes (hypothesis of self-similarity (Aki, 1967)). Seismic processes in a prefractured medium can explain the observed small stress drop values.
  4. Focal mechanisms from moment tensor estimates show that radiation patterns are mostly well interpreted in terms of double couple source models.
  5. The scaling of peak ground motion parameters (A max andV max vs seismic moment) can be explained by an ω2 source model (constant stress drop) multiplied by an exponential function with a small decay parameter, which takes into account the measured attenuation.
These results support the hypothesis of earthquakes generated by simple shear fractures along prefractured structures as a response to changes in the stress field due to the ground deformation.  相似文献   

11.
Around 700 reported precursors of about 350 earthquakes, including the negative observations, have been compiled in 11 categories with 31 subdivisions. The data base is subjected to an initial sorting and screening by imposing three restrictions on the ranges of main shock magnitude (M≥4.0), precursory time (t≤20 years), and the epicentral distance of observation points (X m≤4.100.3M ). Of the 31 subcategories of precursory phenomena, 18 with 9 data points or more are independently studied by regressing their precursory times against magnitude. The preliminary results tend to classify the precursors into three groups:
  1. The precursors which show weak or no correlation between time and the magnitude of the eventual main shock. Examples of this group are foreshocks and precursory tilt.
  2. The precursors which show clear scaling with magnitude. These include seismic velocity ratio (V p/Vs), travel time delay, duration of seismic quiescence, and, to some degree, the variation ofb-value, and anomalous seismicity.
  3. The precursors which display clustering of precursory times around a mean value, which differs for different precursors from a few hours to a few years. Examples include the conductivity rate, geoelectric current and potential, strain, water well level, geochemical anomalies, change of focal mechanism, and the enhancement of seismicity reported only for larger earthquakes. Some of the precursors in this category, such as leveling changes and the occurrence of microseismicity, show bimodal patterns of precursory times and may partially be coseismic.
In addition, each category with a sufficient number of reported estimates of distance and signal amplitude is subjected to multiple linear regression. The usefulness of these regressions at this stage appears to be limited to specifying which of the parameters shows a more significant correlation. Standard deviations of residuals of precursory time against magnitude are generally reduced when observation distance enters as a second independent variable. The effect is more pronounced for water well level and conductivity rate changes. While a substantial portion of the data seem to suffer from personal bias, hence should be regarded as noise, the observations of a number of strain sensitive phenomena such as strain, water well level, and conductivity rate changes, appear to be internally more consistent. For instance, their precursory times suggest a scaling relationship with the strain energy surface density associated with the main shock. The scaling is not identical for all three phenomena so that they may constitute the imminent, short- and intermediate-term manifestation of the same process, i.e. strain loading, respectively.  相似文献   

12.
Viewing from the energy angle and taking the Beijing depression as an example, this paper studies the effects of underlying geological structures, mainly bedrock topography and bedrock faults, on the propagation of seismic waves and discusses the effects of the overlying soil layer on seismic waves. From the study, some conclusions are drawn as follows:
  1. Underlying bedrock faults affect the duration, frequency spectra and characteristics of energy distribution of seismic waves.
  2. Underlying bedrock topography changes the field of ground motion not only because the bedrock at different places receives different amounts of energy from the same source but also because its asperities diverge or converge seismic waves.
  3. Overlying soil layer is able both to absorb and to amplify seismic waves.
In the paper, the idea of expressing the intensity of seismic waves in terms of energy is put forward. Comparison between the expressions of the seismic wave intensity in terms of energy and the maximum amplitude shows that the former is better than the latter in reflecting the effects of underlying geological structures on seismic wave propagation.  相似文献   

13.
论发震构造特性在潜在震源区参数确定中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
周本刚 《地震地质》2004,26(4):750-760
发震构造特性是潜在震源区划分及其地震年发生率确定的重要依据。潜在震源区除了反映“未来具有发生破坏性地震的地区”的内涵外,还应反映高震级档地震具有相似复发特征的涵义。由于在地震活动性参数统计单元内,有一些具有不同本底地震的活动构造块体,为更好地反映地震活动的空间不均匀性,考虑潜在震源区的三级划分是有必要的。通过分析潜在震源区内高震级档地震的复发特征,计算预测时段内潜在震源区的高震级档地震的发震概率,采用预测时段内概率等效转换获得地震年平均发生率的方法,有助于在中国地震危险性分析框架内考虑潜在震源区的强震复发特性。另外,文中还对潜在震源区内特征地震次级震级档频度不足的特性和发震构造上强震非均匀性在地震危险性分析中的应用问题进行了探讨  相似文献   

14.
The Seismic Intensity Zoning Map of China(1990)was based on the probabilistic method of seismic hazard analysis.In compiling the map,the characteristics of inhomogeneity of earthquake distribution both in space and time in China are considered sufficiently,and some necessary modifications in the model of seismic hazard analysis are carried out.Based on the analysis of the seismic activity and seismotectonic environment,26 seismic provinces are divided first as the statistical elements of the seismicity analysis; the seismic potential source areas are then divided in the seismic provinces.The 733 potential source areas with various upper limit magnitudes have been divided in the country.According to the reliable time domain of earthquake data with various magnitude intervals,the b values in magnitude-frequency relationship are calculated in the seismic provinces.According to the analysis of the inhomogeneity of seismicity distribution both in space and time,the annual average occurrence rates of the eart  相似文献   

15.
为了由过去的地震活动性推测将来的地震活动性,引入了地震(震级≥m)的期望年发生率v(≥m)来描述一个地区的地震活动性.根据全球地震目录(1964-1994年)以及南加州(1932-1995年)和华北(1970-1994年)两个区域地震目录资料,以统计样本量作为目录记录时间长短的相对量度,对由不同的统计样本量计算得出的地震实际年发生率v(≥m,T,t)进行了统计分析,得到三点结沦:①在统计样本量n足够大的情况下,地震实际年发生率表现出准平稳时间过程的特征,可近似地看作地震期望年发生率,本文给出了这种近似的误差(离差系数)与统计样本量之间的定量关系;②离差系数与统计样本量之间的关系与震级无关,表现出不同震级层次的相似性;③统计样本量相同时,不同震级的地震期望年发生率之间满足logv(≥)=a-bm的关系,形式上与G-R关系相似,但它给出了由小地震的统计特征估计大地震的期望年发生率及其统计误差的方法.基于上述结论,进一步讨论了地震活动性的统计特征在地震危险性分析中的潜在应用。  相似文献   

16.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

17.
The paper gives a summary of geophysical aspects of man-made electromagnetic noise in the Earth as follows:
  • - EM distortion effects of man-made constructions below and over the Earth's surface defined as ‘passive-noise’,
  • - field observation of EM disturbances due to ‘active’ man-made sources,
  • - EM source mechanism of some important active sources from a geophysical point of view,
  • - efforts in order to improve the signal-to noise ratio by instrumental, methodological and dataprocessing ways,
  • - application of man-made EM noise for geophysical prospecting.
  • The paper is based on world-wide EM noise survey studies published mainly in geophysical journals.  相似文献   

    18.
    In this paper, the relations of the changes of earth resistivity (ρ) s recorded at 100 geoelectrical stations in 31 earthquakes occurred in the continent of China, to the active faults (active abyssal faults or badly active faults near the focal zone) and the causative stress fields are discussed and the following conclusions are obtained:
    1. On the condition that a station is near the active fault and in the direction of the causative stress (DCS) of an earthquake (EQ), the immediate variation ofρ s to the earthquake (called “immediate variation” for short) could be recorded generally at the station.
    2. The active fault which lies between a station and the epicenter of an earthquake seems to play a role in “obstructing” the recording of the imminent variation when the strike of the fault is close to the DCS of the earthquake. When that is parrallel with the DCS the “obstructing” function of the fault is strongest; when normal with the DCS, weakest.
    The regularity seems to have the universality for moderate earthquakes and strong ones occurred in the continent of China.  相似文献   

    19.
    The Lorca Basin has been the object of recent research aimed at studying the phenomena of earthquake-induced landslides and its assessment in the frame of different seismic scenarios. However, it has not been until the 11th May 2011 Lorca earthquakes when it has been possible to conduct a systematic approach to the problem. In this paper we present an inventory of slope instabilities triggered by the Lorca earthquakes which comprises more than 100 cases, mainly rock and soil falls of small size (1–100  \(\hbox {m}^{3}\) ). The distribution of these instabilities is here compared to two different earthquake-triggered landslide hazard maps: one considering the occurrence of the most probable earthquake for a 475-years return period in the Lorca Basin \((\hbox {M}_{\mathrm{w}}=5.0)\) based on both low- and high-resolution digital elevation model (DEM); and a second one matching the occurrence of the \(\hbox {M}_{\mathrm{w}}=5.2\) 2011 Lorca earthquake, which was performed using the higher resolution DEM. The most frequent Newmark displacements related to the slope failures triggered by the 2011 Lorca earthquakes are lower than 2 cm in both the hazard scenarios considered. Additionally, the predicted Newmark displacements were correlated to the inventory of slope instabilities to develop a probability of failure equation. The fit seems to be very good since most of the mapped slope failures are located on the higher probability areas. The probability of slope failure in the Lorca Basin for a seismic event similar to the \(\hbox {M}_{\mathrm{w}}\) 5.2 2011 Lorca earthquake can be considered as very low (0–4 %).  相似文献   

    20.
    Iranian earthquakes, a uniform catalog with moment magnitudes   总被引:3,自引:1,他引:2  
    A uniform earthquake catalog is an essential tool in any seismic hazard analysis. In this study, an earthquake catalog of Iran and adjacent areas was compiled, using international and national databanks. The following priorities were applied in selecting magnitude and earthquake location: (a) local catalogs were given higher priority for establishing the location of an earthquake and (b) global catalogs were preferred for determining earthquake magnitudes. Earthquakes that have occurred within the bounds between 23–42° N and 42–65° E, with a magnitude range of M W 3.5–7.9, from the third millennium BC until April 2010 were included. In an effort to avoid the “boundary effect,” since the newly compiled catalog will be mainly used for seismic hazard assessment, the study area includes the areas adjacent to Iran. The standardization of the catalog in terms of magnitude was achieved by the conversion of all types of magnitude into moment magnitude, M W, by using the orthogonal regression technique. In the newly compiled catalog, all aftershocks were detected, based on the procedure described by Gardner and Knopoff (Bull Seismol Soc Am 64:1363–1367, 1974). The seismicity parameters were calculated for the six main tectonic seismic zones of Iran, i.e., the Zagros Mountain Range, the Alborz Mountain Range, Central Iran, Kope Dagh, Azerbaijan, and Makran.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号