首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transport of wood in rivers during floods is an important process that underlies differences in habitat and morphology between water courses and regions. Quantitative data are needed to properly address management objectives and balance wood budgets. In this study we use a streamside video camera to detect wood passage and measure quasi‐instantaneous rates of wood transport in the Ain River, France. The objectives are to verify the procedure, describe the relation between wood transport and discharge, and construct and validate a wood budget for the reach upstream of the camera. Verification of the procedure includes tests of detection frequency, wood velocity, and piece size. A log base two transformation is proposed to classify wood by piece length. It was found that a wood transport threshold occurs at approximately two thirds of the bankfull discharge. Wood transport follows a positive linear relation with discharge up to the bankfull discharge but is both more variable and less sensitive to discharge when the floodplain is inundated. Transport rates are approximately four times higher on the rising limb of the hydrograph than on the falling limb. Wood transport estimates from a three‐stage rating curve are two to 10 times higher than those from a wood budget using local and aerial surveys of upstream dynamics. Future work should address uncertainties related to wood diameter measurements, sampling length and frequency, and antecedent floods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in‐channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in‐transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in‐channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
This study examined the temporal dynamics and longitudinal distribution of wood over a multi‐decadal timescale at the river reach scale (36 km) and a meander bend scale (300–600 m) in the Ain River, a large gravel‐bed river flowing through a forested corridor, and adjusting to regulation and floodplain land‐use change. At the 36 km scale, more wood was recruited by bank erosion in 1991–2000 than since the 1950s. The longitudinal distribution of accumulations was similar between 1989 and 1999, but in both years individual pieces occurred homogeneously throughout the reach, while jam distribution was localized, associated with large concave banks. A relationship between the mean number of pieces and the volume recruited by bank erosion (r2 = 0·97) indicated a spatial relationship between areas of wood production and storage. Wood mass stored and produced and channel sinuosity increased from 1993 to 2004 at three meander bends. Sinuosity was related to wood mass recruited by bank erosion during the previous decade (r2 = 0·73) and both of these parameters were correlated to the mean mass of wood/plot (r2 = 0·98 and 0·69 respectively), appearing to control wood storage and delivery at the bend scale. This suggests a local origin of wood stored in channel, not input from upstream trapped by preferential sites. The increase in wood since 1950 is a response to floodplain afforestation, to a change from braided to meandering channel pattern in response to regulation, and to recent large floods. We observed temporal stability of supply and depositional sectors over a decade (on a reach scale). Meander bends were major storage sites, trapping wood with concave banks, also delivering wood. These results, and the link between sinuosity and wood frequency, establish geomorphology as a dominant wood storage and recruitment control in large gravel‐bed rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Wood export from a watershed is a function of peak annual discharge, but one hydrologic relationship alone does not fully explain observed variability. Consideration of physical processes that influence the amount of wood available for transport is needed. However, wood recruitment, storage, mobilization, breakage, and transport rates and processes remain difficult to quantify. A theoretical wood transport equation focused on variations in discharge was the motivation for investigation into watershed‐specific wood export rates. Herein, multiplicative coefficients categorized by water year type are developed, paired with the equation, and validated to provide a new method for prediction of wood export at the watershed scale. The coefficients are defined as representing a broad suite of watershed processes that encompass spatio‐temporally variable scales. Two complementary datasets from the 1097 km2 mountainous North Yuba River, California watershed were used. Wood surveys above New Bullards Bar Reservoir yielded a wood availability estimate of 250 000–300 000 m3 along the channel network. Annual wood export into the reservoir was field‐surveyed in 2010, 2012 and 2013, and estimated in seven years via remotely sensed images over the 30 year study period of water years 1985–2014. Empirical, watershed‐scale wood export rates ranged from 0.3–5.6%. Comparison of predicted quantities using the new DVWP (discharge variations modified by watershed processes) wood export equation to observed wood export quantities resulted in an aggregate error rate of ±10%. When individual wood export quantities were compared, predicted to observed varied by 0.5–3.0 times. Total wood export of 59 000–71 000 m3 was estimated over the 30 year period, yielding a rate of 1.8 to 2.2 m3/year/km2. Wood export predictive capabilities at the watershed scale may help water resource and regulatory agencies plan for wood transfers to augment downstream ecosystems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Monitoring large wood (LW: width > 10 cm, length > 1 m) in transport within rivers is a necessary next step in the development and refinement of wood budgets and is essential to a better understanding of basin‐wide controls and patterns of LW flux and loads. Monitoring LW transport with coarse interval (≥ 1 min) time‐lapse photography enables the deployment of monitoring cameras at large spatial and long temporal scales. Although less precise than continuous sampling with video, it allows investigators to answer broad questions about basin connectivity, compare drainages and years,and identify transport relationships and thresholds. This paper describes methods to: (i) construct fluvial wood flux curves; (ii) analyze the effects of sample interval lengths on transport estimates; and (iii) estimate total wood loads within a specified time period using coarse‐interval time‐lapse photography. Applying these methods to the Slave River, a large‐volume (103 m3 s‐1), low‐gradient (10? 2 m km? 1) river in the subarctic (60° N), yielded the following results. A threshold relationship for wood mobility was located around 4500 m3 s‐1. More wood is transported on the rising limb of the hydrograph because wood flux declines rapidly on the falling limb. Five‐ and ten‐minute sampling intervals provided unbiased equal variance estimates of 1 min sampling, whereas 15 min intervals were biased towards underestimation by 5–6%, possibly due to periodicity in wood flux. Total LW loads estimated from the 1 min dataset and adjusted for a 15% misdetection rate from 13 July to 13 August are: 1600 ± 200 # pieces, 600 ± 200 m3 and of the order of 1.3 × 105 kg carbon. The total wood load for the entire summer season is probably at least double this estimate because only the second half of the summer was monitored and a large early summer peak freshet was missed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Large wood tends to be deposited in specific geomorphic units within rivers. Nevertheless, predicting the spatial distribution of wood deposits once wood enters a river is still difficult because of the inherent complexity of its dynamics. In addition, the lack of long‐term observations or monitored sites has usually resulted in a rather incomplete understanding of the main factors controlling wood deposition under natural conditions. In this study, the deposition of large wood was investigated in the Czarny Dunajec River, Polish Carpathians, by linking numerical modelling and field observations so as to identify the main factors influencing wood retention in rivers. Results show that wood retention capacity is higher in unmanaged multi‐thread channels than in channelized, single‐thread reaches. We also identify preferential sites for wood deposition based on the probability of deposition under different flood scenarios, and observe different deposition patterns depending on the geomorphic configuration of the study reach. In addition, results indicate that wood is not always deposited in the geomorphic units with the highest roughness, except for low‐magnitude floods. We conclude that wood deposition is controlled by flood magnitude and the elevation of flooded surfaces in relation to the low‐flow water surface. In that sense, the elevation at which wood is deposited in rivers will differ between floods of different magnitude. Therefore, together with the morphology, flood magnitude represents the most significant control on wood deposition in mountain rivers wider than the height of riparian trees. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha−1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha−1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre‐existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Widespread, intense rainfall over the Upper Rio Chagres watershed (414 km2) in central Panama during December 2010 triggered numerous landslides that introduced large numbers of trees to the river network. We flew by helicopter along the mainstem Upper Chagres and the adjacent margins of Lake Alhajuela, into which the Upper Chagres flows, in February and June 2011. We used low‐elevation video photography from these flights to tally the number of wood pieces stored along the lake margin and within the channel, and the number of landslides reaching the mainstem. We used these tallies with ground‐verified estimates of average wood piece size and landslide surface area, and assumptions about wood density, carbon content, and aboveground biomass, to develop a first‐order estimate of carbon export in the form of wood from the Upper Chagres following the 2010 storms. Based on the wood tally, we estimate 9 · 6 to 16 Mg C/km2 export, and from the landslide tally we estimate 24 Mg C/km2. We believe the landslide tally provides a more accurate minimum estimate of carbon export from the Upper Chagres during the December 2010 storms. These values are an order of magnitude higher than limited data for average or background rates of wood‐based carbon export from other catchments, but two orders of magnitude lower than wood‐based carbon export during extreme storms in Taiwan. The findings suggest that duration of flood flow above a threshold for mobilizing wood within the channel network exerts a more important control on wood export from the Upper Chagres than magnitude of flood peak. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Wood in rivers plays a major role both ecologically and morphologically. In recent decades, due to human activities in the river channels and along the riparian zone, wood obstruction and jamming has exacerbated flooding hazards and infrastructure damage. Therefore, it is necessary to quantify the wood flux and discharge in rivers to improve wood hazard management. Among the various methods for monitoring the wood flux in a river, the streamside videography technique is effective given its high temporal and spatial resolution. Previous work monitored the wood discharge (m3/s) using this technique in the Ain River (France) during three floods (MacVicar and Piégay, 2012), and the same method is implemented on the Isère River (France) to obtain the statistics of wood discharge for two floods. Comparison between the two sites supports the generalization of both the monitoring technique and the link between wood discharge and flood characteristics. We first show that the maximum wood discharge is observed at bankfull discharge, and we confirm the three stage model proposed by MacVicar and Piégay (2012). Additionally, transverse distributions of the number of wood pieces and corresponding wood length appear to be similar for different flood magnitudes on each site. As a technical contribution, the use of the same technique on two sites allows for recommendations on key decisions related to the location and implementation of the equipment. Both statistical and technical contributions can be used by decision makers to implement this monitoring technique, acquire the wood transport parameters, and evaluate the potential wood hazards at local scale or along a river. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25 m in length along 12 streams in the Colorado Front Range. Length and diameter of each piece of wood were measured, and the orientation of each piece was tallied as a ramp, buried, bridge or unattached. These data were then used to evaluate longitudinal patterns of wood distribution in forested headwater streams of the Colorado Front Range, and potential channel‐, valley‐ and watershed‐scale controls on these patterns. We hypothesized that (i) wood load decreases downstream, (ii) wood is non‐randomly distributed at channel lengths of tens to hundreds of meters as a result of the presence of wood jams and (iii) the proportion of wood clustered into jams increases with drainage area as a result of downstream increases in relative capacity of a stream to transport wood introduced from the adjacent riparian zone and valley bottom. Results indicate a progressive downstream decrease in wood load within channels, and correlations between wood load and drainage area, elevation, channel width, bed gradient and total stream power. Results support the first and second hypotheses, but are inconclusive with respect to the third hypothesis. Wood is non‐randomly distributed at lengths of tens to hundreds of meters, but the proportion of pieces in jams reaches a maximum at intermediate downstream distances within the study area. We use these results to propose a conceptual model illustrating downstream trends in wood within streams of the Colorado Front Range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one‐dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35‐year return period) equivalent to the 50‐year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The artificial gravel augmentation of river channels is increasingly being used to mitigate the adverse effects of river regulation and sediment starvation. A systematic framework for designing and assessing such gravel augmentations is still lacking, notably on large rivers. Monitoring is required to quantify the movement of augmented gravel, measure bedform changes, assess potential habitat enhancement, and reduce the uncertainty in sediment management. Here we present the results of an experiment conducted in the Rhine River (French and German border). In 2010, 23 000 m3 of sediments (approximately the mean annual bedload transport capacity) were supplied in a by‐passed reach downstream of the Kembs dam to test the feasibility of enhancing sediment transport and bedform changes. A 620‐m‐long and 12‐m‐wide gravel deposit was created 8 km downstream from the dam. Monitoring included topo‐bathymetric surveys, radio‐frequency particle tracking using passive integrated transponder (PIT) tags, bed grain size measurement, and airborne imagery. Six surveys performed since 2009 have been described (before and after gravel augmentation, and after Q2 and Q15 floods). The key findings are that (i) the augmented gravel was partially dispersed by the first flood event of December 2010 (Q1); (ii) PIT tags were found up to 3200 m downstream of the gravel augmentation site after four years, but the effects of gravel augmentation could not be clearly distinguished from the effects of floods and internal remobilization on more than 3500 m downstream; (iii) linear and log‐linear relationships linking bedload transport, particle mobility, and grain size were established; and (iv) combined bathymetry and PIT tag surveys were useful for evaluating potential environmental risks and the first morpho‐ecological responses. This confirmed the complementary nature of such techniques in the monitoring of gravel augmentation in large rivers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Wood flux (piece number per time interval) is a key parameter for understanding wood budgeting, determining the controlling factors, and managing flood risk in a river basin. Quantitative wood flux data is critically needed to improve the understanding of wood dynamics and estimate wood discharge in rivers. In this study, the streamside videography technique was applied to detect wood passage and measure instantaneous rates of wood transport. The goal was to better understand how wood flux responds to flood and wind events and then predict wood flux. In total, one exceptional wind and seven flood events were monitored on the Ain River, France, and around 24,000 wood pieces were detected visually. It is confirmed that, in general, there is a threshold of wood motion in the river equal to 60% of bankfull discharge. However, in a flood following a windy day, no obvious threshold for wood motion was observed, which confirms that wind is important for the preparation of wood for transport between floods. In two multi-peak floods, around two-thirds of the total amount of wood was delivered on the first peak, which confirms the importance of the time between floods for predicting wood fluxes. Moreover, we found an empirical relation between wood frequency and wood discharge, which is used to estimate the total wood amount produced by each of the floods. The data set is then used to develop a random forest regression model to predict wood frequency as a function of three input variables that are derived from the flow hydrograph. The model calculates the total wood volume either during day or night based on the video monitoring technique for the first time, which expands its utility for wood budgeting in a watershed. A one-to-one link is then established between the fraction of detected pieces of wood and the dimensionless parameter “passing time × frame rate ”, which provides a general guideline for the design of monitoring stations.  相似文献   

16.
Storage of large woody debris in the wide, mountain, Czarny Dunajec River, southern Poland, was investigated following two floods of June and July 2001 with a seven‐year frequency. Within a reach, to which wood was delivered only by bank erosion and transport from upstream, wood quantities were estimated for eighty‐nine, 100 m long, channel segments grouped into nine sections of similar morphology. Results from regression analysis indicated the quantity of stored wood to be directly related to the length of eroded, wooded banks and river width, and inversely related to unit stream power at the flood peak. The largest quantities of wood (up to 33 t ha?1) were stored in wide, multi‐thread river sections. Here, the relatively low transporting ability of the river facilitated deposition of transported wood while a considerable length of eroded channel and island banks resulted in a large number of trees delivered from the local riparian forest. In these sections, a few morphological and ecological situations led to the accumulation of especially large quantities of wood within a small river area. Very low amounts of wood were stored in narrow, single‐thread sections of regulated or bedrock channel. High stream power facilitated transport of wood through these sections while the high strength of the banks and low channel sinuosity prevented bank retreat and delivery of trees to the channel. Considerable differences in the character of deposited wood existed between wide, multi‐thread channel sections located at different distances below a narrow, 7 km long, channellized reach of the river. Wood deposited close to the downstream end of the channellized reach was highly disintegrated and structured into jams, whereas further downstream well preserved shrubs and trees prevailed. This apparently reflects differences in the distance of wood transport and shows that in a mountain river wider than the height of trees growing on its banks, wood can be transported long distances along relatively narrow, single‐thread reaches but is preferentially deposited in wide, multi‐thread reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This work investigates wood dynamics in braided streams through physical modelling in a mobile bed laboratory flume, with the specific objective to characterize wood storage and turnover as a function of wood input rate and of wood element type. Three parallel channels (1.7 m wide, 10 m long) filled with uniform sand were used to reproduce braided networks with constant water discharge and sediment feeding. Wood dowels with and without simplified root wads were regularly added at the upstream end of each flume at different input rates, with a 1:2:3 ratio between the three flumes. Temporal evolution of wood deposition patterns and remobilization rates were monitored by a series of vertical images that permitted the recognition of individual logs. Results show that wood tends to disperse in generally small accumulations (< 5 logs), with higher spatial density on top of sediment bars, and is frequently remobilized due to the intense morphological changes. The amount of wood stored in the channel depends on log input rate through a non‐linear relationship, and input rates exceeding approximately 100 logs/hour determine a sharp change in wood dynamics, with higher storage volume and augmented formation of large jams (> 10 elements) that are less prone to remobilization. Presence of root wads seems to play a minor role in wood deposition, but it reduces the average travel distance of logs. Turnover rates of logs were similar in the three flumes, independently of wood input rate and largely resembling the turnover rate of exposed bars. For the simulated conditions, significant effects of wood on bed morphology were not observed, suggesting that interactions with fine sediments and living vegetation are crucial to form large, stable wood jams able to bring about relevant morphological changes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This study assessed the effect of the largest flood since dam regulation on geomorphic and large wood (LW) trends using LW distributions at three time periods on the 150 km long Garrison Reach of the Missouri River. In 2011, a flood exceeded 4390 m3/s for a two‐week period (705% above mean flow; 500 year flood). LW was measured using high resolution satellite imagery in summer 2010 and 2012. Ancillary data including forest character, vegetation cover, lateral bank retreat, and channel capacity. Lateral bank erosion removed approximately 7400 standing trees during the flood. Other mechanisms, that could account for the other two‐thirds of the measured in‐channel LW, include overland flow through floodplains and islands. LW transport was commonly near or over 100 km as indicated by longitudinal forest and bank loss and post‐flood LW distribution. LW concentrations shift at several locations along the river, both pre‐ and post‐flood, and correspond to geomorphic river regions created by the interaction of the Garrison Dam upstream and the Oahe Dam downstream. Areas near the upstream dam experienced proportionally higher rates of bank erosion and forest loss but in‐channel LW decreased, likely due to scouring. A large amount of LW moved during this flood, the chief anchoring mechanism was not bridges or narrow channel reaches but the channel complexity of the river delta created by the downstream reservoir. Areas near the downstream dam experienced bank accretion and large amounts of LW deposition. This study confirms the results of similar work in the Reach: despite a historic flood longitudinal LW and channel trends remain the same. Dam regulation has created a geomorphic and LW pattern that is largely uninterrupted by an unprecedented dam regulation era flood. River managers may require other tools than infrequent high intensity floods to restore geomorphic and LW patterns. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Surveys of wood along 30 forested headwater stream reaches in La Selva Biological Station in north‐eastern Costa Rica represent the first systematic data reported on wood loads in neotropical streams. For streams with drainage areas of 0·1–8·5 km2 and gradients of 0·2–8%, wood load ranged from 3 to 34·7 m3 wood/100 m channel and 41–612 m3 wood/ha channel. These values are within the range reported for temperate streams. The variables wood diameter/flow depth, stream power, the presence of backflooding, and channel width/depth are consistently selected as significant predictors by statistical models for wood load. These variables explain half to two‐thirds of the variability in wood load. These results, along with the spatial distribution of wood with respect to the thalweg, suggest that transport processes exert a greater influence on wood loads than recruitment processes. Wood appears to be more geomorphically effective in altering bed elevations in gravel‐bed reaches than in reaches with coarser or finer substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low‐order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand‐replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low‐order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号