首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Headwater streams drain the majority of most landscapes, yet less is known about their morphology and sediment transport processes than for lowland rivers. We have studied headwater channel form, discharge and erosive power in the humid, moderate‐relief Valley and Ridge and Blue Ridge provinces of the Appalachian Mountains. Field observations from nine headwater (<2 km2 drainage area), mixed bedrock–alluvial channels in a variety of boundary conditions demonstrate variation with respect to slope‐area channel initiation, basic morphology, slope distribution, hydraulic geometry, substrate grain size and role of woody debris. These channels display only some of the typical downstream trends expected of larger, lowland rivers. Variations are controlled mainly by differences in bedrock resistance, from the formation level down to short‐wavelength, outcrop‐scale variations. Hydrologic modeling on these ungauged channels estimates the recurrence of channel‐filling discharge and its ability to erode the channel bed. Two‐year recurrence discharge is generally larger and closer to bankfull height in the Valley and Ridge, due to low soil infiltration capacity. Discharge that fills the channel to its surveyed bankfull form is variable, generally exceeding two‐year flows at small drainage areas (<0·5 km2) and being exceeded by them at greater drainage areas. This suggests bankfull is not controlled by the same recurrence storm throughout a channel or physiographic region. Stream power and relative competence are also variable. These heterogeneities contrast relations observed in larger streams and illustrate the sensitivity of headwater channels to local knickpoints of resistant bedrock and armoring of channels by influx of coarse debris from hillslopes. The general lack of predictable trends or functional relationships among hydraulic variables and the close coupling of channel form and function with local boundary conditions indicate that headwater streams pose a significant challenge to landscape evolution modeling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Debris flows are one of the most important processes which influence the morphology of channels and valley floors in the Oregon Coast Range. Debris flows that initiate in bedrock hollows at heads of first-order basins erode the long-accumulated sediment and organic debris from the floors of headwater, first- and second-order channels. This material is deposited on valley floors in the form of fans, levees, and terraces. In channels, deposits of debris flows control the distribution of boulders. The stochastic nature of sediment supply to alluvial channels by debris flows promotes cycling between channel aggradation which results in a gravel-bed morphology, and channel degradation which results in a mixed bedrock- and boulder-bed morphology. Temporal and spatial variability of channel-bed morphology is expected in other landscapes where debris flows are an important process.  相似文献   

4.
This study analyses large wood (LW) storage and the associated effects on channel morphology and flow hydraulics in three third‐order mountain basins (drainage area 9–12 km2) covered in old‐growth Nothofagus forests, ranging from the temperate warm Chilean Andean Cordillera to the sub‐Antarctic Tierra del Fuego (Argentina). Amount, characteristics and dimensions of large wood (>10 cm diameter, >1 m long) were recorded, as well as their effects on stream morphology, hydraulics and sediment storage. Results show that major differences in LW abundance exist even between adjacent basins, as a result of different disturbance histories and basin dissection. Massive LW volumes (i.e. >1000 m3 ha?1) can be reached in basins disturbed by fires followed by mass movements and debris flows. Potential energy dissipation resulting from wood dams is about a quarter of the total elevation drop in two streams, with a gross sediment volume stored behind wood dams of around 1000 m3 km?1, which appears to be of the same order as the annual sediment yield. Finally, the presence of wood dams may increase flow resistance by up to one order of magnitude. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Sediment transport and channel morphology in mountainous hillslope-coupled streams reflect a mixture of hillslope and channel processes. However, the influence of lithology on channel form and adjustment and sediment transport remains poorly understood. Patterns of channel form, grain size, and transport capacity were investigated in two gravel-bed streams with contrasting lithology (basalt and sandstone) in the Oregon Coast Range, USA, in a region in which widespread landslides and debris flows occurred in 1996. This information was used to evaluate threshold channel conditions and channel bed adjustment since 1996. Channel geometry, slope, and valley width were measured or extracted from LiDAR and sediment textures were measured in the surface and subsurface. Similar coarsening patterns in the first few kilometres of both streams indicated strong hillslope influences, but subsequent downstream fining was lithology-dependent. Despite these differences, surface grain size was strongly related to shear stress, such that the ratio of available to critical shear stress for motion of the median surface grain size at bankfull stage was around one over most of the surveyed lengths. This indicated hydraulic sorting of supplied sediment, independent of lithology. We infer a cycle of adjustment to sediment delivered during the 1996 flooding, from threshold conditions, to non-alluvial characteristics, to threshold conditions in both basins. The sandstone basin can also experience complete depletion of the gravel-size alluvium to sand size, leading to bedrock exposure because of high diminution rates. Although debris flows being more frequent in a basalt basin, this system will likely display threshold-like characteristics over a longer period, indicating that the lithologic control on channel adjustment is driven by differences in rock competence that control grain size and available gravel for bed load transport. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
The quantification of debris‐flow hazard requires estimates of debris‐flow frequency and magnitude. Several methods have been proposed to determine the probable volume of future debris flows from a given basin, but most have neglected to account for debris recharge rates over time, which may lead to underestimation of debris‐flow volumes in basins with rare debris flows. This paper deals with the determination of debris recharge rates in debris‐flow channels based on knowledge of debris storage and the elapsed time since the last debris flow. Data are obtained from coastal British Columbia and a relation is obtained across a sample of basins with similar terrain and climatic conditions. For Rennell Sound on the west coast of the Queen Charlotte Islands, the power‐law relation for area‐normalized recharge rate, Rt, versus elapsed time, te was Rt = 0·23te?0·58 with an explained variance of 75 per cent. A difference in recharge rates may exist between creeks in logged and unlogged forested terrain. The power function for undisturbed terrain was Rt = 0·20te?0·49, while the function for logged areas was Rt = 0·30te?0·77. This result suggests that for the same elapsed time since the last debris flow, clearcut gullies tend to recharge at a slower rate than creeks in old growth forest. This finding requires verification, particularly for longer elapsed times since debris flow, but would have important implications for forest resource management in steep coastal terrain. This study demonstrates that commonly used encounter probability equations are inappropriate for recharge‐limited debris flow channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The assessment of the dominant flow type on alluvial fans usually refers to two categories: debris‐flow fans (i.e. sediment gravity flows) and fluvial fans (i.e. fluid gravity flows). Here we report the results of combined morphometric, stratigraphic and sedimentological approaches which suggest that hyperconcentrated flows, a transitional process rheologically distinct from debris flows and floods and sometimes referred to as debris floods, mud floods, or transitional debris flows, are the dominant fan building process in eastern Canada. These flows produce transitional facies between those of debris flows which consist of a cohesive matrix‐supported diamicton, and those of river flows which display more distinct stratification. The size of the blocks in the channels and the abrasion scars at the base of several trees attest to the high transport capacity of these flows. The fan channels are routed according to various obstacles comprised primarily of woody debris that impede sediment transit. However, these conditions of sediment storage are combined with readily available sediment due to the friable nature of the local lithology. Tree‐ring analysis allowed the reconstruction of eight hydrogeomorphic events which are characterized by a return period of 9.25 years for the period 1934–2008, although most of the analyzed events occurred after 1970. Historical weather data analysis indicates that they were related to rare hydrometeorological events at regional and local scales. This evidence led to the elaboration of weather scenarios likely responsible for triggering flows on the fan. According to these scenarios, two distinct hydrologic regimes emerge: the torrential rainfall regime and the nival regime related to snowmelt processes. Hydrogeomorphic processes occurring in a cold‐temperate climate, and particularly on small forested alluvial fans of north‐eastern North America, should receive more attention from land managers given the hazard they represent, as well as because of their sensitivity to various meteorological parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The debris deposits at the bottom of very steep natural channels and streams in high mountain areas can be mobilized by runoff, triggering a water–sediment mixture flow known as debris flow. The routing of debris flow through human settlements can cause damage to civil structures and loss of human lives. The prediction of such an event, or the runoff discharge that triggers it, assumes an interest in risk analyses and the planning of defence measures. The object of this study is to find a method to determine the critical runoff value that triggers debris flow as a result of channel‐bed failure. Historical and rainfall data on 30 debris flows that occurred in six watersheds of the Dolomites (north‐eastern Italian Alps) were collected from different sources. Field investigations at the six sites, together with the hydrologic response to the rainfalls that triggered the events, were performed to obtain a realistic scenario of the formation of the debris flow there occurred. Field observations include a survey along the channel of the triggering reach of debris flow, with measurements of the channel slope and cross‐section and sampling of debris deposits for grain size distribution. Simulated runoff discharge values based on the rainfall recorded by pluviometers were then compared with values obtained through experimental criteria on the initiation and formation of debris flow by bed failure. The results are discussed to provide a plausible physical‐based method for the prediction of the triggering of debris flow by channel‐bed failure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Explosive volcanic eruptions can cause long-term landscape change, leading to increased sediment discharge that continues after the cessation of the eruptions. During the period 1990–1995, eruptions of Mount Unzen, Japan, generated large amounts of pyroclastic material, resulting in 57 debris-flow events during 1991–2018. To investigate changes in the relationships between rainfall characteristics and debris-flow occurrence, we conducted the following: geometric analysis of two gullies (i.e., debris-flow initiation zones) using LiDAR (light detection and ranging)-generated 1 m DEMs (digital elevation models); rainfall analysis, based on the relationship between rainfall duration and mean intensity (i.e., considering the intensity–duration, or ID, threshold); and debris-flow monitoring during 2016–2018. Since 1991, rainfall runoff has caused erosion of the supplied pyroclastic material, generating a channel network consisting of incised gullies. With sufficient rainfall, debris flows formed, accompanied by further gully erosion; this resulted in both vertical and lateral adjustments of the cross-sectional geometry. In the two decades since the eruptions ceased, readily mobilized pyroclastic material has become scarce as the gullies have adjusted to local hydrographic conditions. At the same time, the infiltration capacity of the volcanic flank has increased, reducing the capacity for overland flow. As a result, since 2000, rainfall events with intensities above the ID threshold have occurred; however, the lack of sediment supplied by the gullies appears to have hindered the occurrence and development of debris flows. This suggests that debris flows in volcanically perturbed landscapes may occur at lower rainfall thresholds as long as the corresponding upland channels are evolving as a result of intense overland flow. However, as such channels evolve towards equilibrium geometries, the frequency of debris flows decreases in response to the reduction in sediment availability.  相似文献   

11.
Following the Painted Cave Fire of 25 June 1990 in Santa Barbara, California which burned 1214 ha, an emergency watershed protection plan was implemented consisting of stream clearing, grade stabilizers and construction of debris basins. Research was initiated focusing on hydrological response and channel morphology changes on two branches of Maria Ygnacio Creek, the main drainage of the burned area. Research results support the hypothesis that the response of small drainage basins in chaparral ecosystems to wildfire is complex and flushing of sediment by fluvial processes is more likely than by high magnitude debris flows. During the winter of 1990–1991, 35–66 cm of rainfall and intensities up to 10 cm per hour for a five-minute period were recorded with a seasonal total of 100% of average (normal) rainfall (average=63 cm/year). During the winter of 1991–1992, 48–74 cm of rainfall and intensities up to 8 cm per hour were recorded with a seasonal total of 115% of normal. Even though there was moderate rainfall on barren, saturated soils, no major debris flows occurred in burned areas. The winter of 1992–1993 recorded total precipitation of about 170% of normal, annual average intensities were relatively low and again no debris flows were observed. The response to winter storms in the first three years following the fire was a moderate but spectacular flushing of sediment, most of which was derived from the hillslopes upstream of the debris basins. The first significant storm and stream flow of the 1990–1991 winter was transport-limited resulting in large volumes of sediment being deposited in the channel of Maria Ygnacio Creek; the second storm and stream flow was sediment-limited and the channel scoured. Debris basins trapped about 23 000 m3, the majority coming from the storm of 17–20 March 1991. Sediment transported downstream during the three winters following the fire and not trapped in the debris basins was eventually flushed to the estuarine reaches of the creeks below the burn area, where approximately 108 000 m3 accumulated. Changes in stream morphology following the fire were dramatic as pools filled with sediment which greatly smoothed longitudinal and cross-sectional profiles. Major changes in channel morphology occur following a fire as sediment derived from the hillslope is temporarily stored in channels within the burned area. However, this sediment may quickly move downstream of the burned region, where it may accumulate reducing channel capacity and increasing the flood hazard. Ecological consequences of wildfire to the riparian zone of streams in the chaparral environment are virtually unknown, but must be significant as the majority of sediment (particularly gravel necessary for fish and other aquatic organisms) entering the system does so in response to fires. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   

13.
Natural bedrock rivers flow in self‐formed channels and form diverse erosional morphologies. The parameters that collectively define channel morphology (e.g. width, slope, bed roughness, bedrock exposure, sediment size distribution) all influence river incision rates and dynamically adjust in poorly understood ways to imposed fluid and sediment fluxes. To explore the mechanics of river incision, we conducted laboratory experiments in which the complexities of natural bedrock channels were reduced to a homogenous brittle substrate (sand and cement), a single sediment size primarily transported as bedload, a single erosion mechanism (abrasion) and sediment‐starved transport conditions. We find that patterns of erosion both create and are sensitive functions of the evolving bed topography because of feedbacks between the turbulent flow field, sediment transport and bottom roughness. Abrasion only occurs where sediment impacts the bed, and so positive feedback occurs between the sediment preferentially drawn to topographic lows by gravity and the further erosion of these lows. However, the spatial focusing of erosion results in tortuous flow paths and erosional forms (inner channels, scoops, potholes), which dissipate flow energy. This energy dissipation is a negative feedback that reduces sediment transport capacity, inhibiting further incision and ultimately leading to channel morphologies adjusted to just transport the imposed sediment load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of in‐stream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates with wood load; the residual volume of pools created in association with wood correlates inversely with drainage area; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but the analyses suggest that sediment volume correlates positively with drainage area and wood volume. The form of sediment storage in relation to wood appears to change downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Pool volume correlates positively with wood volume and negatively with channel gradient. Sediment volume correlates well with beaver pond area. More abundant in‐stream wood and beaver populations present historically equated to greater sediment storage within river corridors and greater residual pool volume. One implication of these changes is that protecting and re‐introducing wood and beavers can be used to restore rivers. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The movement of sediment through mountain river networks remains difficult to predict, as processes beyond streamflow and particle size are responsible for the entrainment and transport of bedload sediment. In deglaciated catchments, additional complexity arises from glacial impacts on landscape organization. Research to date indicates that the quantity of sediment stored in the channel is an important component of sediment transport in systems which alternate between supply and transport limited states, but limited long-term field data exist which can capture storage-transfer dynamics over a timescale encompassing episodic supply typical of mountain streams. We use a 45-year dataset with annual and decadal-scale data on sediment storage, channel morphology, and wood loading to investigate the spatial and temporal organization of storage in Carnation Creek, a previously glaciated 11 km2 catchment on Vancouver Island, British Columbia. Sediment is supplied episodically to the channel, including additions from debris flows in the early 1980s just upstream of the studied channel region. Analyzing the spatial and temporal organization of sediment storage along 3.0 km of channel mainstem reveals a characteristic storage wavelength similar to the annual bedload particle travel distance. Over time, two scales of variation in storage are observed: small-scale fluctuation of 3–10 years corresponding to local erosional and depositional processes, and larger scale response over 25–35 years related to supply of sediment from hillslopes. Complex relationships between storage and sediment transfer (i.e., annual change in storage) are identified, with decadal-scale hysteresis present in storage-transfer relations in sites influenced by hillslope sediment and logjams. We propose a conceptual model linking landscape organization to temporal variability in storage and to storage–export cycles. Collectively, our results reaffirm the importance of storage to sediment transport and channel morphology, and highlight the complexity of storage–transport interactions. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
This study proposes a sediment‐budget model to predict the temporal variation of debris volume stored in a debris‐flow prone watershed. The sediment‐budget is dominated by shallow landslides and debris outflow. The basin topography and the debris volume stored in the source area of the debris‐flow prone watershed help evaluating its debris‐flow susceptibility. The susceptibility model is applied to the Tungshih area of central western Taiwan. The importance of the debris volume in predicting debris‐flow susceptibility is reflected in the standardized coefficients of the proposed statistical discriminant model. The high prediction rate (0·874) for the occurrence of debris flows justifies the capability of the proposed susceptibility models to predict the occurrence of debris flows. This model is then used to evaluate the temporal evolution of the debris‐flow susceptibility index. The analysis results show that the numbers of watershed which are classified as a debris‐flow group correspond well to storage of sediment at different time periods. These numbers are 10 before the occurrence of Chi‐Chi earthquake, 13 after the occurrence of Chi‐Chi earthquake, 16 after the occurrence of landslides induced by Typhoon Mindulle (Typhoon M), and 14 after the occurrence of debris flows induced by Typhoon M. It indicates that the occurrence of 7·6 Chi‐Chi earthquake had significant impact on the debris flow occurrence during subsequent typhoons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号