首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用SPAC法估算地壳S波速度结构   总被引:4,自引:3,他引:1       下载免费PDF全文
S波速度结构能够反映地球介质的物性差异,是地壳内低速区结构特征判别的重要依据.本文尝试利用空间自相关法(SPAC法)从地震台站微动信号的垂直分量中提取瑞利波相速度频散曲线,通过对频散曲线的反演获得地下介质的S波速度结构.以国家数字测震台网8个宽频带地震台站的实测微动数据为例,采用SPAC方法获得了首都圈地区北京附近约30 km 深度范围内的一维S波速度结构.结果表明,该区结晶基底埋深较浅约2 km;分别在5~8 km 和12~16 km 深处发育S波低速层;8 km 和 20 km 处是S波速度差异较大的速度分界面.这一结果与以往地震学及人工地震探测结果较为吻合,表明SPAC法估算地壳S波速度结构是可行、有效的.  相似文献   

2.
The local geology and shallow S-wave velocity structure of a site are recognized to be key factors for the increase in the damaging potential of seismic waves. Indeed, seismic amplitudes may be amplified in frequency ranges unfavorable for building stock by the presence of soft sedimentary covers over lying hard bedrock. Hence, microzonation activities, which aim at assessing the site response as accurately as possible, have become a fundamental task for the seismic risk reduction of urbanized areas. Methods based on the measurement of seismic noise, which typically are fast, non-invasive, and low cost, have become a very attractive option in microzonation studies.Using observations derived from seismic noise recordings collected by two-dimensional arrays of seismic stations, we present a novel joint inversion scheme for surface wave curves. In particular, the Love wave, the Rayleigh wave dispersion and the HVSR curves are innovatively combined in a joint inversion procedure carried out following a global search approach (i.e., the Genetic Algorithm).The procedure is tested using a data set of seismic noise recordings collected at the Bevagna (Italy) test-site. The results of the novel inversion scheme are compared with the inversion scheme proposed by Parolai et al. (2005), where only Rayleigh wave dispersion and HVSR curves are used, and with a cross-hole survey.  相似文献   

3.
The Ningdu basin, located in southern Jiangxi province of southwest China, is one of the Mesozoic basin groups which has exploration prospects for geothermal energy. A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration. In this study, we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution. Based on the dense seismic array including 35 short-period (5 s-100 ?Hz) seismometers with an average interstation distance of ~5 ?km, Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion. Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm. The results revealed obvious low-velocity anomalies in the center of the basin, consistent with the low-velocity Cretaceous sedimentary rocks. The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies. The obvious seismic interface is about 2 ?km depth in the basin center and decreases to 700 ?m depth near the basin boundary, suggesting spatial thickness variations of the Cretaceous sediment. The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basin-controlling fault, which may provide possible upwelling channels for geothermal fluid. This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.  相似文献   

4.
使用位于松辽盆地内部的NECESSArray台阵连续两年背景噪声数据,通过波形互相关和多重滤波方法提取到2~14 s较短周期的Rayleigh波群速度和相速度频散曲线,基于快速行进(FMM)面波成像方法得到群速度和相速度成像结果,并采用最小二乘迭代线性方法反演获得了松辽盆地深至12 km的三维S波速度结构.本文成像结果显示:松辽盆地内部S波速度分布的横向不均匀性与该区域的构造单元呈现出良好的空间对应关系.从地表至下方的6 km深度,盆地北部比南部表现出更加强烈的低速异常,这一特征可能与盆地南北的沉积构造差异有关.中央坳陷区低速异常的边界与嫩江断裂走向相互平行,表明盆地基底断裂对盆地形成演化具有一定的控制作用.在垂直速度结构剖面中,2.9 km·s-1的S波速度等值线与地震反射剖面显示的盆地基底深度大致对应.基于S波速度模型和盆地基底速度(2.9 km·s-1),我们获得精细的松辽盆地沉积层厚度模型,结果表明松辽盆地的沉积层厚度分布呈现出中间厚、四周薄的特征,中央坳陷区的沉积层厚度范围大约在3~6 km.  相似文献   

5.
本文利用在龙门山断裂带周边布设的57个台站自2008年11月至2009年11月为期一年的垂直分量连续地震环境噪声数据,通过短周期地震环境噪声成像方法,获得了龙门山断裂带中北段地壳25km深度范围的S波精细速度结构.结果表明:(1)龙门山断裂带周边区域10km以上的速度结构与地表断裂的分布形态具有良好的一致性,速度结构控制了龙门山主要断层的深部延展特征;在15km及以下深度,S波速度结构呈现沿龙门山和沿岷山隆起走向的交叉构造格局,由此造成的速度结构差异可能影响了汶川地震的破裂过程;(2)速度结构随深度的分布特征为龙门山断裂带主要断层的深部延伸形态给出了良好的约束,结果进一步确认了龙门山断裂中段的高角度铲型断裂构造特征;(3)研究区的南端发现了龙门山断裂下方20km以下深度具有与松潘地块中地壳低速层相关的低速结构的迹象,这可能是汶川地震破裂带南段22km左右深度存在脆韧转换带的一个证据.研究结果显示出密集台阵和短周期环境噪声成像方法在地壳浅部精细结构和断层探测研究中具有巨大潜力.  相似文献   

6.
The lithospheric structure of the Sinai Peninsula is shown by means of nine shear velocity profiles for depths ranging from zero to 50 km, determined from the Rayleigh wave analysis. The traces of 30 earthquakes, which occurred from 1992 to 1999 in and around the study area, have been used to obtain Rayleigh wave dispersion. These earthquakes were registered by a broadband station located in Egypt (KEG station). The dispersion curves were obtained for periods between 3 and 40 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events were grouped in source zones to obtain a dispersion curve for each source-station path. These dispersion curves were inverted according to generalized inversion theory, to obtain shear wave velocity models for each source-station path, which is the main goal of this study. The shear velocity structure obtained for the Sinai Peninsula is shown through the shear velocity distributions with depth. These results agree well with the geology and other geophysical results, previously obtained from seismic and gravity data. The obtained velocity models suggest the existence of lateral and vertical heterogeneity. The shear velocity increases generally with depth for all paths analyzed in the study area. Nevertheless, in some paths a small low velocity channel in the upper or lower crust occurs. Along these profiles, it is found that the crustal structure of the Sinai Peninsula consists of three principal layers: upper crust with a sedimentary layer and lower crust. The upper crust has a sedimentary cover of 2 km thick with an average S-velocity of 2.53 km/s. This upper crust has a variable thickness ranging from 12 to 18 km, with S-wave velocity ranging from 3.24 to 3.69 km/s. The Moho discontinuity is located at a depth of 30 km, which is reflected by a sharp increase in the S-velocity values that jump from 3.70–4.12 to 4.33–4.61 km/s.  相似文献   

7.
The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread.  相似文献   

8.
在近地表地球物理领域, 基于地脉动(或称背景噪声)提取的面波频散曲线反演地下S波速度结构是一种简单经济的工程勘察方法. 本文基于地脉动的空间自相关方法对一个微型台阵观测的背景噪声记录进行处理, 介绍了一种简单易行的提取频散曲线的数据处理方法, 获得了6.7—23 Hz频段的可靠频散曲线; 通过对该观测频散曲线与预测模型的频散曲线进行拟合, 反演得到S波速度结构. 结果表明, 该速度结构与钻孔直接测试的结果相吻合.   相似文献   

9.
Past and recent observations have shown that the local site conditions significantly affect the behavior of seismic waves and its potential to cause destructive earthquakes. Thus, seismic microzonation studies have become crucial for seismic hazard assessment, providing local soil characteristics that can help to evaluate the possible seismic effects. Among the different methods used for estimating the soil characteristics, the ones based on ambient noise measurements, such as the H/V technique, become a cheap, non-invasive and successful way for evaluating the soil properties along a studied area.In this work, ambient noise measurements were taken at 240 sites around the Doon Valley, India, in order to characterize the sediment deposits. First, the H/V analysis has been carried out to estimate the resonant frequencies along the valley. Subsequently, some of this H/V results have been inverted, using the neighborhood algorithm and the available geotechnical information, in order to provide an estimation of the S-wave velocity profiles at the studied sites.Using all these information, we have characterized the sedimentary deposits in different areas of the Doon Valley, providing the resonant frequency, the soil thickness, the mean S-wave velocity of the sediments, and the mean S-wave velocity in the uppermost 30 m.  相似文献   

10.
横波速度预测方法   总被引:7,自引:3,他引:4       下载免费PDF全文
准确的横波测井速度是叠前地震反演和叠前地震属性分析的必要参数,然而实际生产中往往缺乏横波速度信息.采用经验公式往往精度有限,本文采用Biot-Gassmann低频速度模型,以及Pride公式建立起基质弹性模量与骨架弹性模量关系,证明了纵波速度大小随固结系数的增大而减小,因而可以通过迭代方式计算出合适的固结系数,进而得到横波速度大小.通过两个实例说明该方法能得到很高的预测精度.  相似文献   

11.
利用南海地区28个陆地地震台站和2个布设于太平岛和东沙岛的新增海岛地震台站2011—2016年间的连续地震背景噪声波形数据,使用互相关方法计算得到了台站间的互相关函数,并提取出Rayleigh面波群速度和相速度频散曲线.采用快速行进和子空间方法反演获得了南海及周边地区12~40s周期的Rayleigh面波群速度和相速度图像,并联合反演得到了研究区深至60km的三维S波速度结构.考虑到南海数千米厚海水层对于面波频散反演的严重影响,本文在反演模型中加入了水层,显著提高了反演结果的可靠性.成像结果表明:南海及周边地区地壳上地幔顶部S波速度结构存在显著的横向不均匀性,并与这一区域的主要构造单元具有较好的空间对应关系.在5~10km深度,莺歌海—宋红盆地区的低速异常特征可能与盆地较厚的沉积层有关.在5~15km深度,海域高速异常区与海盆空间位置具有高度一致性,推测与海盆区地壳厚度相对陆缘区明显偏薄有关.当深度从20km增加至30km,海盆区的高速特征扩展至了陆缘地区,反映了地壳厚度从海盆至陆缘逐渐增厚的趋势,与OBS(海底地震仪)深地震剖面给出的地壳精细结构结果一致.至35~60km深度,海盆的高速异常特征依然明显,且速度值随深度增加整体呈现上升的趋势,推测南海海盆区的岩石圈厚度应该大于60km.  相似文献   

12.
The spectral analysis of surface waves (SASW) method is an in situ, seismic method for determining the shear wave velocity (or maximum shear modulus) profile of a site. The SASW test consists of three steps: field testing, evaluation of dispersion curve by phase unwrapping method, and determination of shear modulus profile by inversion process. In general, field testing and dispersion curve evaluation are regarded as simple work. However, because of characteristic of Fourier transform used in the conventional phase unwrapping method, dispersion curve is sensitive to background noise and body waves in the low frequency range. Furthermore, under some field conditions such as pavement site, the usual phase unwrapping method can lead to erroneous dispersion curve. To overcome problem of the usual phase unwrapping method, in this paper, a new method of determining dispersion curve for SASW method was applied using time–frequency analysis based on harmonic wavelet transform as an alternative method of a current phase unwrapping method. To estimate the applicability of proposed method to SASW method, numerical simulations at various layered soil and pavement profiles were performed and the dispersion curves by proposed method are more reliable than those by the usual phase unwrapping method.  相似文献   

13.
将一种新的方法——频率-贝塞尔变换法(F-Jmethod)应用于日本NIED在关东盆地布设的MeSO-net台网的背景噪声数据中,证明频率-贝塞尔变换法可以有效地从背景噪声中提取高阶频散曲线.利用提取的基阶和高阶频散曲线反演关东盆地区域的沉积层和地震基岩层的S波速度结构,并将我们反演得到的S波速度结构与Koketsu等提出的日本综合速度结构模型进行对比讨论.我们的例子证明,在基阶面波的基础上,高阶面波能减少在反演中的非唯一性,得到更为准确的S波速度结构.  相似文献   

14.
We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.  相似文献   

15.
Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m (Vs30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.  相似文献   

16.
寇岚  张进 《地震工程学报》2019,41(5):1259-1265
利用重力异常反演测试三维地震波速度结构,存在解不唯一、可靠性不高的问题。将面波反演充分融合到重力异常反演方程中,降低传统反演方法的非唯一性,并提升可靠性。以川滇地区为例,采用融合后的重力异常反演方法分析三维地震波速度结构。通过速度和密度的关系转换,得到对应的重力异常数据。由于面波频射数据主要对地震波横波速度敏感,因此将重力异常数据和初始横波速度相连,依据地震波速度和岩石密度之间的关系,获取重力异常反演方程,用于分析速度结构。选取21.6°~34.2°N、97.1°~105.9°E范围内的川滇地区活动块体作为实验数据,经过实验分析发现:使用该方法迭代反演川滇地区地壳上地幔顶部横波速度,重力异常数据和面波频射数据的残差值分别是6.24 mGal和0.027 km/s,实际拟合效果较好;分析该地区不同深度切面横波速度发现,在24 km深度处,上地壳中含有相对低速层,在44 km深度处,中下地壳中存在低速层;且该方法分析川滇地区三维地震波速度结构解的分辨率较高。  相似文献   

17.
The 3D structure of the Mygdonian sedimentary basin (N. Greece) is investigated. The aim of this study is to propose a 3D model of this sedimentary structure that can later be used to model the seismic records currently being obtained by the permanent accelerograph network operating in the area. This model builds on previous efforts and incorporates new data. The geometry and dynamic properties of the soil layers were inverted using data from microtremor array measurements, seismic refraction profiles, boreholes, and geotechnical investigations. Phase-velocity dispersion curves of Rayleigh waves were determined at 27 sites in the basin using the spatial autocorrelation method (SPAC) introduced by Aki [1]. S-wave velocity profiles were inverted from these dispersion curves and the whole valley structure was interpolated using our new results and all previously available data. The proposed 3D model describes the geometry and shear-wave velocities of the Mygdonian and pre-Mygdonian sedimentary systems, and the top bedrock surface. Our results indicate that this 3D model correctly reflects the geometry and dynamic properties of the sedimentary layers. The case of Euroseistest, where the subsoil structure is the result of bringing together many disparate data, could be used as an example for similar alluvial basins throughout the world, where usually only scarce data is available.  相似文献   

18.
The Tienshan orogenic belt is one of the most active intracontinental orogenic belts in the world. Studying the deep crust-mantle structure in this area is of great significance for understanding the deep dynamics of the Tienshan orogen. The distribution of fixed seismic stations in the Tianshan orogenic belt is sparse. The low resolution of the existing tomographic results in the Tienshan orogenic belt has affected the in-depth understanding of the deep dynamics of the Tienshan orogenic belt. In this paper, the observation data of 52 mobile seismic stations in the Xinjiang Seismic Network and the 11 new seismic stations in the Tienshan area for one-year observations are used. The seismic ambient noise tomography method is used to obtain the Rayleigh surface wave velocity distribution image in the range of 10~50s beneath the Chinese Tienshan and its adjacent areas (41°~48° N, 79°~91° E). The joint inversion of surface wave and receiver function reveals the S-wave velocity structure of the crust and uppermost mantle and the crustal thickness below the station beneath the Chinese Tienshan area(41°~46° N, 79°~91° E). The use of observation data from mobile stations and new fixed seismic stations has improved the resolution of surface wave phase velocity imaging and S-wave velocity structure models in the study area.
The results show that there are many obvious low-velocity layers in the crust near the basin-bearing zone in the northern Tienshan Mountains and the southern Tienshan Mountains. There are significant differences in the structural characteristics and distribution range of the low-velocity zone in the northern margin and the southern margin. Combining previous research results on artificial seismic profiles, receiver function profiles, teleseismic tomography, and continental subduction simulation experiments, it is speculated that the subduction of the Tarim Basin and the Junggar Basin to the Tienshan orogenic belt mainly occurs in the middle of the Chinese Tienshan orogenic belt, and the subduction of the southern margin of the Tienshan Mountains is larger than that of the northern margin, and the subduction of the eastern crust is not obvious or in the early subduction stage. There are many low-velocity layers in the inner crust of the Tienshan orogenic belt, and most of them correspond to the strong uplifting areas that are currently occurring. The thickness of the crust below the Tienshan orogenic belt is between 55km and 63km. The thickness of the crust(about 63km)is the largest near the BLT seismic station in the Bazhou region of Xinjiang. The average crustal thickness of the Tarim Basin is about 45km, and that of the Junggar Basin is 47km. The S-wave velocity structure obtained in this study can provide a new deep basis for the study of the segmentation of the Tienshan orogenic belt and the difference of the basin-mountain coupling type.  相似文献   

19.
Wang  Xu  Chen  Ling  Ling  Yuan  Gao  Yifan  Zhang  Jianyong  Yao  Huajian 《中国科学:地球科学(英文版)》2019,62(11):1819-1831
A new method is developed to constrain S-wave velocity structures of the shallow crust based on frequencydependent amplitudes of direct P-waves in P-wave receiver functions(P-RFs). This method involves the following two steps:first, the high-frequency approximate amplitude formula of direct P-waves in P-RFs of individual stations is used to fit the observed amplitude distribution against the ray parameters at different frequencies, and second, the S-wave velocity depth profile beneath each station is constrained according to an empirical correlation between frequency and depth. Unlike traditional inversion techniques, the newly developed method is not dependent on initial velocity models, and the lateral and vertical resolutions of the results are controlled by the interstation distance and the data frequency, respectively. The effectiveness of the method is verified by synthetic tests on various models. The method is then applied to teleseismic P-RF data from a NW-SEtrending linear seismic array extending from the northeastern Tibetan Plateau to the central Sichuan Basin to construct an S-wave velocity image of the shallow crust along the array. The imaged velocity structure is further analysed and compared with the regional geology. In particular, the structural differences of sedimentary basins in the cratonic area of the stable Sichuan Basin and tectonically active belts in northeastern Tibet are investigated. By combining our results with previous observations, the relationship between the surficial geology and deep processes in the study region is also discussed.  相似文献   

20.
以三维高分辨地震与海底高频地震仪(OBS)联合勘探数据为基础,获得海底之下沉积层的地震反射成像剖面及多波信息,并以此确定研究区含天然气水合物沉积层的纵、横波速度的变化特征.根据走时反演获得的横波速度与纵波速度对比分析发现,研究区海底之下500 m深度范围内的某些沉积层具有较高的纵横波速度,这一纵波速度升高区域与水合物稳定带对应,而纵波速度下降并且横波速度变化较小的区域,可能与游离气的存在相关.游离气的可能存在与基于这一区域2007年钻探测井结果的普遍认识不完全相符.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号