首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用四川地震台网2000年1月~2008年4月的地震数据,使用地震层析成像方法反演了龙门山及其邻近地区的地壳P波速度结构,以此为依据分析了龙门山断裂带和汶川Ms8.0地震的深部构造特征.研究结果表明,龙门山的地壳速度结构和深部动力学性质与汶川Ms8.0地震的破裂起始点、震源深度以及破裂传播方向密切相关.龙门山西侧的彭灌杂岩体是地壳内部应变强度较大、易于应力长期积累的主要载体,汶川Ms8.0地震即位于彭灌杂岩体的南端,毗邻四川盆地的西部边缘,该块体与四川盆地地壳的碰撞是引发汶川Ms8.0地震的直接原因.在汶川以北,沿着龙门山断裂的高速异常有利于破裂的发生和传递,而汶川以南地壳强度相对较弱,不易产生脆性破裂而引发地震,这可能是地震破裂自汶川向东北方向延伸、汶川以南缺少地震活动的重要原因.汶川Ms8.0地震的深部动力成因与龙门山断裂两侧的构造差异有关,松潘-甘孜造山带中下地壳强度较弱,青藏高原的向东运动受到四川盆地刚性岩石层阻碍,迫使龙门山发生垂向变形,中下地壳厚度增加,莫霍面弯曲下沉,基底则褶皱抬升向山前盆地逆冲,地壳形变所产生的应力积累为汶川地震的发生提供了深部动力来源.  相似文献   

2.
2008年5月12日汶川MW7.9地震发生在龙门山断裂带。龙门山断裂带及其邻域的地壳上地幔三维速度结构的研究对于理解汶川大地震的动力学背景具有重要的意义。2006年10月至2009年10月,在国家重大基础研究项目(973)的支持下,中国地震局地质研究所地震动力学国家重点实验室在川西地区(26°~32°N,100°~105°E)布设了由297台宽频带数字地震仪组成的流动观测台阵(简称川西台阵)。根据川西台阵记录的环境噪声和远震波形数据,利用噪声成像技术和接收函数方法,我们研究了川西地区(29°~32°N,100°~105°E)地壳上地幔100km深度范围内的三维S波速度结构。本文得到的结果为研究川西高原和四川盆地的地壳结构提供了新的高分辨率观测证据。我们的结果表明:1)观测台阵覆盖的川滇地块、松潘-甘孜地块和四川盆地的地壳上地幔S波速度结构具有显着差异,龙门山断裂和鲜水河断裂带,作为地块间的边界断裂带,对两侧地壳结构具有明显的控制作用。2)观测台阵覆盖区域的地壳厚度存在明显差异,川滇地块的地壳厚度为60~64km,松潘-甘孜地块的地壳厚度为52~56km,四川盆地前陆的地壳厚度为46~52km,沿龙门山断裂带松潘-甘孜地块和四川盆地形成镶嵌结构,汶川地震震中处南北两侧的壳幔边界存在约6km的断错。3)四川盆地前陆低速特征表明相应区域存在厚度8~10km的沉积盖层,松潘-甘孜地块和川滇地块的中下地壳具有大面积分布的S波低速区,松潘-甘孜地块地壳平均泊松比高达0.29~0.31,汶川地震余震绝大多数分布在低速区上方的高速介质区域内,而四川盆地的中下地壳呈现整体性的高速特征,以汶川地震的震中为界,龙门山断裂带北段和南段的S波速度结构显示了明显的速度分段特征,其北段的S波速度总体上高于南段。4)本文给出的研究区地壳三维S波速度结构表明,川西高原中下地壳较为软弱,而四川盆地中下地壳的强度应明显高于松潘-甘孜地块,意味着四川盆地坚硬中下地壳可以阻挡松潘-甘孜地块向东的逃逸;另一方面,川西高原和川滇地块的中下地壳虽然均存在大面积的S波低速区,但松潘-甘孜地块内的地壳速度结构相对来说较为复杂,并形成了高、低速相间的结构特征,表明在四川盆地的阻挡作用下,该地块形成了折皱变形的结构。5)与S波低速区相应,松潘-甘孜地块和川滇地块中下地壳应处于部分熔融的状态,这对该区域存在中下地壳通道流(Channelflow)的推断是一个支持;但是,松潘-甘孜地块内是否存在中下地壳通道流仍有待进一步的深入研究。6)接收函数方位各向异性的偏振分析表明,以汶川地震震中为界,龙门山断裂西南侧处于挤压状态,而其东北侧的主压应力方向与断层走向大体平行,推断先存应力场可能驱动了汶川地震逆冲破裂之后沿龙门山断裂向北东方向的走滑破裂。  相似文献   

3.
近年来,四川盆地南缘(川南)中强地震频次增多和地震活动性增强,2021年9月16日四川省泸州市泸县MS6.0地震的发生再次引起国内外学者对川南地区深部孕震环境和潜在地震危险性的密切关注.为了探究泸县6.0级地震震区的深部结构特征,本文基于最新布设于震区70个短周期密集地震台站的观测资料,采用背景噪声成像法构建了泸县MS6.0震区三维S波精细速度结构.研究结果表明,研究区内喻家寺向斜和华蓥山断裂带东/西支深部速度结构表现明显非均匀性,喻家寺向斜构造区在深度3.0 km内表现为低速,随着深度增加,速度逐渐增大.华蓥山断裂带东、西支除了存在局部低速非均匀体,整体上表现为NE-SW展布的高速特征.泸县震源区西侧4.0~6.0 km深度呈现低速异常,东侧则表现高速异常分布,主震位于高低速分界带,震区周边存在大范围的明显线状几何特征的地震分布,震源深度优势分布层位主要集中在3.0~5.0 km之间.综合已有的资料分析,主震西侧的低速异常区指示着该处可能存在流体,推测泸县6.0级地震可能是在区域构造应力和流体扰动的作用下,泸县震区的先存隐伏断层发生错动所致...  相似文献   

4.
龙门山断裂带多参数深部结构成像与地震成因研究   总被引:6,自引:4,他引:2       下载免费PDF全文
通过反演大量的纵、横波地震数据,获得了沿龙门山断裂带及周边区域的深部三维精细结构,结合前人二维大地电磁探测研究成果,提出龙门山断裂带地壳形变与深部速度结构和导电率不均匀性有关,探讨了2008年汶川和2013年芦山地震的诱发和产生与流体侵入及地壳形变的密切关系.本研究发现,2008年汶川地震发生在高速度、高泊松比和低电导率的区域,2013年芦山地震则位于高速度、低泊松比和低电导率的发震层.在上地壳中,四川前陆盆地的低速、低泊松比和低阻异常与松潘一甘孜地块的高速、高泊松比和高阻异常形成了鲜明的对比.在龙门山断裂带下方的两个低速和低阻块体,将龙门山断裂带分成南、中和北三段.我们的研究认为,这两个异常体与来自松潘甘孜地块的下地壳和(或)上地幔的局部熔融或流体侵入到龙门山断裂带的脆弱区有关.基于对汶川和芦山地震的余震分布特征及震源区的地震波速度、泊松比及电阻率参数分析,揭示了龙门山断裂带深部剧烈的地壳形变与流体应力积累对2008年汶川和2013年芦山地震的触发及其地震破裂过程具有重要的控制作用.  相似文献   

5.
龙门山后山断裂汶川M_S8.0地震地表破裂带   总被引:2,自引:0,他引:2  
2008年汶川Ms8.0地震发生之后,多方研究者开展了汶川震区地表破裂实地调查。已发表的调查结果论证汶川地震地表破裂带沿龙门山构造带中央断裂和前山断裂分布。本文作者近期沿龙门山后山活动断裂开展了踏勘性调查。调查结果表明,除龙门山中央断裂带和前山断裂带出现汶川地震的地表破裂带之外,位于龙门山构造带后山断裂(汶川-茂县断裂)存在另一条长约100km、  相似文献   

6.
龙门山构造带及汶川震源区的S波速度结构   总被引:22,自引:9,他引:13       下载免费PDF全文
利用四川地震台网的观测资料和体波地震层析成像方法反演了龙门山地区的S波速度结构,据此分析了龙门山断裂带的地壳结构和汶川震源区的深部构造特征.反演结果表明,地震破裂与龙门山断裂及其两侧的地壳结构差异存在明显的对应关系,汶川以北的龙门山上地壳具备较高的强度且明显抬升,灌县至江油是龙门山西侧应力积累的主要地区,汶川8.0级地震位于其南部边缘;四川盆地的刚性地壳向西俯冲于龙门山之下,其凸出部与造山带古老基底在汶川附近发生碰撞是汶川成为8.0级地震破裂起始点的主要原因.汶川以南的龙门山地区地壳上层具有较大的韧性,岩石强度相对减弱,与龙门山北部相比不易于应力积累和产生破裂,因而汶川以南的龙门山断裂缺少余震活动.龙门山地区地壳厚度明显增加,其原因与中下地壳具备较大的柔韧性有关.由于青藏东部向东挤出时受到四川盆地刚性岩石层的阻挡,龙门山中下地壳的塑性变形和垂向物质的增加导致地壳厚度加大和莫霍面下沉,以此方式吸收了龙门山地区的大部分地壳缩短量,地表则强烈褶皱抬升形成数千米的龙门山脉.  相似文献   

7.
断裂构造的活动是地震的成因之一。断裂构造上的小震速度结构分布为人们准确提供了地下壳质结构模型,为断裂的活动性分析提供了依据。文中结合太行山南端的地震台网监测资料,利用小震P波走时数据,通过震源和速度结构的联合反演,确定了太行山断裂构造南端的三维速度结构模型。结果表明: 太行山山前断裂带的西侧存在NNE向断层,速度结构平面分布显示低速区沿断裂带呈条带状分布,太行山隆起区沉积层厚度由8km左右逐渐减薄为2km左右,同时受西侧作用力的影响地壳厚度逐渐增厚。  相似文献   

8.
本文利用2013年芦山M_S7.0级地震同震GPS数据反演了芦山断层几何与断层滑动分布,结果表明:芦山地震发震断层具有南陡北缓、上陡下缓的特征,低倾角的区域位于发震断层北段且靠近映秀断层的一侧;滑动分布模型的最大滑动量为0.82m,其深度为13.67km与小震发生集中平均深度12.5km接近.我们选取1998—2014年龙门山断裂带区域地壳形变观测数据,拟合获得了龙门山断裂带走向方向上的速度分量,发现在汶川M_S8.0地震与芦山M_S7.0地震之间宽度约30km破裂空区,龙门山断裂带西南段与东北段的形变分量以破裂空区为界方向相反.断裂带东北段(汶川地震主要发震断层)的形变分量方向与断层右旋走滑运动方向一致,而在断裂带西南段(芦山地震发震断层)的形变分量方向与断层左旋走滑运动方向一致.芦山地震走滑方向与汶川地震走滑方向相反是因为该断裂带构造运动在特有几何构造下受青藏高原东南向挤压,遇龙门山中段岩石圈楔状构造的阻挡,在汶川M_S8.0地震与芦山M_S7.0地震间的地震空区,形成了构造运动向其两侧分流的结果.  相似文献   

9.
太行山断裂带东南缘地壳三维P波速度结构成像   总被引:1,自引:0,他引:1       下载免费PDF全文
应用多年地震台网观测数据,使用多震相走时成像方法获得了太行山断裂带东南缘地壳的三维P波速度结构模型。结果表明:速度结构图像在浅部较好地反映了地表地形、地质构造的特征,深部显示地壳速度具有明显的横向变化特征。12km深度以上显示研究区北部太行山隆起区地壳主要呈现为高速区,南部沉降区为低速区,而12km深度以下具有反转的特点。整体显示速度异常的走向大致与邻近活动断裂走向一致。垂直速度剖面显示研究区地壳具有分层特征,上地壳厚约10km,速度横向变化较小;中、下地壳的界面呈现局部上隆或凹陷状,横向起伏变化较大。通过分析速度、断裂与中强地震发生的关系推测研究区具备发生中强震的深部孕震条件。  相似文献   

10.
龙门山断裂带地壳精细结构与汶川地震发震机理   总被引:40,自引:16,他引:24       下载免费PDF全文
利用2001年1月至2008年6月四川固定地震台网和临时地震台站记录到的大量P波到时资料,反演了龙门山断裂带及周边地区的地壳精细三维P波速度模型. 结果表明,汶川主震以北和以南地区的结构存在较大差异,以北地区的龙门山断裂带具有很强地壳不均匀性,这与该区发生了大量汶川地震的余震相一致. 这些结果有意义地改进了前人对龙门山断裂带仅为不同块体过渡带的认识. 汶川主震震源区下方存在有明显低波速异常体,表明流体可能存在于龙门山断裂带内. 这些流体可能直接影响汶川大震的形成. 本文的成像结果为下地壳流沿龙门山断裂带上浸提供了可靠的地震学证据.  相似文献   

11.
利用1999-2007和2009-2011年中国大陆GPS水平速度场数据, 采用DEFNODE(反演计算弹性岩石圈块体旋转、 应变和块体边界断层闭锁或同震滑动的Fortran程序)负位错反演程序估算了芦山地震前龙门山断裂带的三维闭锁程度, 并结合剖面结果分析了断层深浅部变形特征. GPS反演结果表明, 1999-2007年, 龙门山断裂中北段(闭锁比例为0.99)处于强闭锁(本文将闭锁比例大于0.97的称为强闭锁)状态; 龙门山断裂南段地表以下深度16 km内为强闭锁, 深度16-21 km处闭锁比例降低为0.62, 深度21-24 km处整条断裂逐渐转变为蠕滑状态. 2009-2011年, 即汶川地震后, 龙门山断裂中北段处于震后蠕滑状态; 龙门山断裂南段深度16-21 km处闭锁比例降低为0.45, 其它位置闭锁程度保持不变. GPS剖面结果显示, 2009-2011年, 即汶川地震后, 龙门山断裂中北段为逆冲兼右旋走滑运动; 而南段断层不能自由滑动、 变形宽度较大. 综合分析认为, 汶川地震时, 龙门山断裂南段并没有发生破裂, 一直处于较强的闭锁状态, 汶川地震的发生又加速了芦山地震的孕育进程; 由于龙门山断裂带南段的闭锁深度较中北段浅, 因此芦山地震较汶川地震强度低、 震级小、 破裂范围窄.   相似文献   

12.
龙门山断裂带精细速度结构的双差层析成像研究   总被引:21,自引:11,他引:10       下载免费PDF全文
利用川西流动地震台阵、汶川地震震后应急台网记录到的P波到时资料,对2008年5月至2008年10月期间发生的汶川地震余震序列应用双差层析成像方法进行了地震震源和三维P波速度结构的联合反演.结果显示,联合反演获得的地震重定位结果与基于一维地壳参考模型的双差定位方法结果相近;研究区15 km以上速度结构与地表断裂分布密切相关,20 km以下深度呈现北东向和北西向交错结构.汶川地震破裂带南段龙门山断裂带之间上地壳呈现高速异常,速度结构的非均匀变化是控制余震分布和主震破裂传播的主要因素;联合反演结果给出了小鱼洞-理县方向存在隐伏断裂的速度结构证据,同时发现,破裂带北东段可能沿新发断裂扩展;结果确认了汶川地震起始段的高角度逆冲断裂特征,也确认了前山断裂和中央断裂在约20 km深度合并到脆韧转换带的特征.  相似文献   

13.
以传统地震环境噪声面波成像方法研究地壳速度结构时,在一些极端的地形条件下,结果与真实结构会存在较大偏差.我们以地震波场三维正演模拟为基础,提出了一种地形校正方法.我们保留了传统噪声面波成像简单的两步反演法,在面波层析成像和一维速度结构反演的基础上,通过地震波场三维模拟近似估计地形和散射波场的影响,并据此校正瑞利波频散曲线,最终反演得到校正地形影响的S波速度结构.理论测试与在实际观测数据上的应用都证明了校正方法的有效性,同时也显示了地形校正的必要性.  相似文献   

14.
利用川滇地区长期积累的地震走时观测资料和汶川地震余震观测资料对汶川地震震源区及周边区域地壳和上地幔P波三维速度结构进行了研究.结果表明,浅部P波速度分布与地表地质之间具有很好的对应关系.龙门山断裂带在20 km以上深度表现为高速异常带,彭灌杂岩体和宝兴杂岩体为局部高速异常区.龙门山断裂带中上地壳的局部高速异常体对汶川地震的余震分布具有明显的控制作用.在余震带南端,余震全部发生在与宝兴杂岩体对应的高速异常体的东北侧;在余震带的中段,与彭灌杂岩体对应的高速异常体在一定程度上控制了余震的分布;在余震带的东北端,宁强-勉县一带的高速异常体可能阻止了余震进一步向东北扩展.龙门山断裂带中上地壳的P波高速异常表明介质具有相对较高的强度,在青藏高原物质向东挤出过程中起到了较强的阻挡作用,有利于深部能量积累.在30 km深度之下,扬子地块具有明显的高速特征,其前缘随深度增加向青藏高原方向扩展,在下地壳和上地幔顶部已达到龙门山断裂带以西.  相似文献   

15.
本文利用1997—2008年5月的汶川M_w7.9地震前川滇地区GPS水平速度场数据,采用负位错理论反演了汶川M_w7.9地震前龙门山断裂带的闭锁程度.在顾及断层闭锁影响下,获得了龙门山断裂带区域震前十年间地壳应变率场.结果表明在汶川地震前龙门山断裂带高度闭锁,在地表以下0~25 km范围内其平均闭锁程度为0.972±0.222,滑动亏损速率约为3 mm·a~(-1).震前龙门山断裂滑脱层的高度闭锁为汶川地震深部同震破裂提供了能量基础;在顾及断层闭锁影响下,龙门山断裂带附近应变积累缓慢,断层附近区域最大主应变率约为3.4~9.6 nanostrain·a~(-1),最小主应变率约为-2.5~-7.1 nanostrain·a~(-1);断层西北侧有明显的应变积累.  相似文献   

16.
川西龙门山及邻区地壳上地幔远震P波层析成像   总被引:31,自引:13,他引:18       下载免费PDF全文
本文利用川西地震台阵记录到的远震P波走时数据和非线性层析成像算法,获得龙门山地区400 km深度范围内的三维P波速度结构.为了适应川西地区复杂的地质结构,本文的层析成像方法采用了快速行进三维走时计算算法和Tarantola非线性反演算法.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异及该区深部动力学特征.本文的研究表明:1)研究区地壳上地幔P波速度结构具有较为明显的分区特征,松潘-甘孜地块和川滇地块岩石圈速度较低,四川盆地岩石圈速度较高,四川盆地的岩石圈厚度从南250 km向北逐渐减薄至100 km.松潘-甘孜地块上地幔存在地幔上涌的特征.2)川滇地块和四川盆地仅是垂直接触关系,而在龙门山地区四川盆地前缘存在减薄的现象,并伴随松潘-甘孜地块上地幔低速物质有侵入四川盆地岩石圈下方的特征,这显示了四川盆地与松潘-甘孜地块和川滇地块的动力学关系的差异.3)以映秀为界,龙门山断裂带被从松潘-甘孜侵入的低速异常分为南北两段:龙门山南段和龙门山北段,汶川大地震及其余震序列均分布在龙门山断裂带的北段.在青藏高原向东挤压和地幔上涌的双重作用下造成松潘-甘孜地块隆升,由于汶川处于龙门山北段的最南端,应力容易在此集中.这些因素可能是汶川MS8.0地震的基本动力学背景.本文的结果不支持四川盆地的俯冲及层间流动的动力学模型.  相似文献   

17.
We apply ambient noise tomography to continuous vertical component broadband seismic data between January 1, 2010 and December 31, 2011from the regional networks of 190 stations deployed by China Earthquake Administration in Hebei, Shanxi and Inner Mengolia. Ambient noise cross-correlations were performed to produce the Green's functions of each station-pair. Firstly, we used the multiple-filter analysis method to extract surface wave group and phase velocity dispersion curves from inter-station paths at periods from 7 to 40s. Then the study area was discretized into a 0.2°×0.2° grid to obtain the group and phase velocity distributions using O'ccam inversion method. After that, three dimensional (3-D) S-wave velocity structures from the surface down to 50km are inverted from group and phase velocities dispersion results. the results of S wave velocity distribution maps generally demonstrate good correlations with surface geological and tectonic features, and they also clearly revealed the lateral velocity variation in the crust. In the mid-upper crust, the basins are clearly resolved with low S wave velocity due to its thick sedimentary layer, and the Taihang and Yanshan uplifts show relative higher S wave velocity distribution. With the increase of depth (>30km), the S wave velocity distribution presents a contrary characteristic compared to that of the shallow layer, and the S wave velocity beneath the Taihang and Yanshan uplifts are much lower than basin areas, which is possibly correlated with the thickness of the crust. 3-D S wave velocity shows a low-velocity zone at~10~20km depth observed beneath the Tanshan-Hejian-Xintai-Cixian belt and Bohai Bay. the low-velocity zone at~20~30km depth beneath the Datong area may be associated with the thermal material in the crust-mantle. Our S wave velocity distribution maps clearly show that Taihang Mountains is not only the boundary of topography and tectonic zone, but also the transition zone of high and low S wave velocity.  相似文献   

18.
The Ningdu basin, located in southern Jiangxi province of southwest China, is one of the Mesozoic basin groups which has exploration prospects for geothermal energy. A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration. In this study, we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution. Based on the dense seismic array including 35 short-period (5 s-100 ?Hz) seismometers with an average interstation distance of ~5 ?km, Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion. Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm. The results revealed obvious low-velocity anomalies in the center of the basin, consistent with the low-velocity Cretaceous sedimentary rocks. The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies. The obvious seismic interface is about 2 ?km depth in the basin center and decreases to 700 ?m depth near the basin boundary, suggesting spatial thickness variations of the Cretaceous sediment. The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basin-controlling fault, which may provide possible upwelling channels for geothermal fluid. This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.  相似文献   

19.
青藏高原是全球造山带研究的热点地区,此前在青藏高原开展的三维层析成像研究大多基于线性反演方法.本文利用青藏高原东缘及邻区布设的127个宽频带固定地震台站记录的连续波形资料,首先通过噪声互相关提取了3~50sRayleigh波群速度频散曲线并反演得到群速度分布,再进一步采用模拟退火法反演了研究区的三维S波速度及泊松比结构.结果显示:(1)松潘—甘孜地块的中下地壳低速异常主要分布在龙日坝断裂带、鲜水河断裂带、龙门山断裂带和岷山隆起所围限的区域,而该区域的中下地壳仅具有中等泊松比值,推测松潘—甘孜地块中下地壳的低速物质可能是青藏高原与扬子块体长期相互作用产生的塑性低速滑脱层;上地壳脆性物质在板块作用下沿中地壳低速滑脱层顶界面发生逆冲增厚,造成龙门山的持续抬升和地形起伏,并在构造边界带形成了应变积累和应力集中;而龙门山断裂带的上地壳低速软弱物质为地壳发生破裂提供了有利条件,从而在某种程度上促进了汶川地震和芦山地震的发生.(2)岷山隆起一带中下地壳的高泊松比异常呈"凸起"形态,结合前人研究发现的较高热流和岩石快速抬升现象,推测岷山隆起一带可能存在岩石圈的拆沉,导致地幔热物质上涌而形成下地壳高泊松比物质.(3)川滇地块的北部和南部具有不同的S波速度和泊松比分布特征.30km深度下川滇地块北部具有明显的低速异常,而该深度下并不具有明显的高泊松比值特征;此外剖面成像结果也显示川滇地块内的低速异常与高泊松比的分布不一致,因此川滇地块的研究结果不支持下地壳流模型.综合其他地震学证据,本文认为川滇地块的变形模式为上地壳纯剪切增厚,块体变形主要受块体内部的走滑断裂及活动边界断裂控制.  相似文献   

20.
利用2007年3月至2009年3月四川数字地震台网的宽频带连续波形资料,通过计算地震背景噪声互相关提取台站对间的经验格林函数,在0.1~0.5 Hz频带下测量每天经验格林函数与参考经验格林函数的走时偏移,进而得到各台站对在该时段内的相对地震波速度变化.结果表明,2008年5月12日汶川Ms8.0级地震造成了震源区地震波速度的急剧降低,最大降幅达0.4%;大致以安县为界,余震带西南部地区在汶川主震后波速降即达到最大值,而东北部地区的最大波速降一般出现在主震后的1~4个月,相对地震波速度变化的这种分段特性与地震序列的时空分布特征有较好的对应关系;在震源区外围的四川盆地也观测到了震后波速降低,而川西高原内部则没有出现显著的波速变化.进一步的分析和计算结果表明主震的静态应力变化和强地面运动引起的地表破坏都不能很好地解释震后波速的急剧降低,地震导致的断层区内部结构破坏和周边介质应力状态改变可能是波速变化的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号