首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Following perturbation, an ecosystem (flora, fauna, soil) should evolve as a function of time at a rate conditioned by external variables (relief, climate, geology). More recently, biogeomorphologists have focused upon the notion of co‐development of geomorphic processes with ecosystems over very short through to very long (evolutionary) timescales. Alpine environments have been a particular focus of this co‐development. However, work in this field has tended to adopt a simplified view of the relationship between perturbation and succession, including: how the landform and ecosystem itself conditions the impact of a perturbation to create a complex spatial response impact; and how perturbations are not simply ecosystem destroyers but can be a significant source of ecosystem resources. What this means is that at the within landform scale, there may well be a complex and dynamic topographic and sedimentological template that co‐develops with soil, flora and fauna. Here, we present and test a conceptual model of this template for a subalpine alluvial fan. We combine detailed floristic inventory with soil inventory, determination of edaphic variables and analysis of historical aerial imagery. Spatial variation in the probability of perturbation of sites on the fan surface was associated with down fan variability in the across‐fan distribution of fan ages, fan surface channel characteristics and fan surface sedimentology. Floristic survey confirmed that these edaphic factors distinguished site floristic richness and plant communities up until the point that the soil–vegetation system was sufficiently developed to sustain plant communities regardless of edaphic conditions. Thus, the primary explanatory variable was the estimated age of each site, which could be tied back into perturbation history and its spatial expression due to the geometry of the fan: distinct plant communities were emergent both across fan and down fan, a distribution maintained by the way in which the fan dissipates potentially perturbing events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This Commentary draws together recently published work relating to the relationship between climate change and geomorphology to address the surprising observation that geomorphic work seems to have had little impact upon the work of the Intergovernmental Panel for Climate Change. However, recent papers show that methodological innovation has allowed geomorphological reconstruction over timescales highly relevant to late 20th century and 21st century climate change. In turn, these and other developments are allowing links to be made between climatic variability and geomorphology, to begin to predict ‘geomorphic futures’ and also to appreciate the role that geomorphic processes play in the flux of carbon and the carbon cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Landscape evolution models (LEMs) are an increasingly popular resource for geomorphologists as they can operate as virtual laboratories where the implications of hypotheses about processes over human to geological timescales can be visualized at spatial scales from catchments to mountain ranges. Hypothetical studies for idealized landscapes have dominated, although model testing in real landscapes has also been undertaken. So far however, numerical landscape evolution models have rarely been used to aid field‐based reconstructions of the geomorphic evolution of actual landscapes. To help make this use more common, we review numerical landscape evolution models from the point of view of model use in field reconstruction studies. We first give a broad overview of the main assumptions and choices made in many LEMs to help prospective users select models appropriate to their field situation. We then summarize for various timescales which data are typically available and which models are appropriate. Finally, we provide guidance on how to set up a model study as a function of available data and the type of research question. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
《国际泥沙研究》2019,34(6):537-549
Dam removal can generate geomorphic disturbances, including channel bed and bank erosion and associated abrupt/pulsed release and downstream transfer of reservoir sediment, but the type and rate of geomorphic response often are hard to predict. The situation gets even more complex in systems which have been impacted by multiple dams and a long and complex engineering history. In previous studies one-dimensional (1-D) models were used to predict aspects of post-removal channel change. However, these models do not consider two-dimensional (2-D) effects of dam removal such as bank erosion processes and lateral migration. In the current study the impacts of multiple dams and their removal on channel evolution and sediment delivery were modeled by using a 2-D landscape evolution model (CAESAR-Lisflood) focusing on the following aspects: patterns, rates, and processes of geomorphic change and associated sediment delivery on annual to decadal timescales. The current modeling study revealed that geomorphic response to dam removal (i.e., channel evolution and associated rates of sediment delivery) in multiple dam settings is variable and complex in space and time. Complexity in geomorphic system response is related to differences in dam size, the proximity of upstream dams, related buffering effects and associated rates of upstream sediment supply, and emerging feedback processes as well as to the presence of channel stabilization measures. Modeled types and rates of geomorphic adjustment, using the 2-D landscape evolution model CAESAR-Lisflood, are similar to those reported in previous studies. Moreover, the use of a 2-D method showed some advantages compared to 1-D models, generating spatially varying patterns of erosion and deposition before and after dam removal that provide morphologies that are more readily comparable to field data as well as features like the lateral re-working of past reservoir deposits which further enables the maintenance of sediment delivery downstream.  相似文献   

5.
Wildfires in the sub‐alpine belt of the Austrian Limestone Alps sometimes cause severe vegetation and soil destruction with increased danger of secondary natural hazards such as avalanches and debris flows. Some of the affected areas remain degraded to rocky slopes even decades after the fire, raising the question as to whether the ecosystems will ever be able to recover. The mean fire interval, the duration of recovery and the role of geomorphic processes for vegetation regeneration are so far unknown. These questions were tackled in a broad research approach including investigation of historical archives to determine the frequency of historical wildfires, mapping vegetation regeneration on 20 slopes of different post‐fire ages, and soil erosion measurements on two slopes. To date, > 450 historical wildfires have been located in the study area. The mean fire interval per square kilometre is c. 750 years, but can be as low as 200–500 years on south‐facing slopes. Vegetation regeneration takes an extremely long time under unfavourable conditions; the typical window of disturbance is between 50 and 500 years, which is far longer than in any other wildfire study known to us. Soil erosion constantly increases in the years after the fires and the elevated intensity can be maintained for decades. A two‐part vegetation regeneration model is proposed depending upon the degree of soil loss. In the case of moderate soil erosion, spreading grassland communities can slow down shrub re‐colonization. In contrast, after severe soil destruction the slopes may remain degraded for a century or longer, before rather rapid regeneration occurs. The reasons are not fully understood but are probably governed by geomorphic process intensity. The interdependence of vegetation regeneration and geomorphic processes is a paradigm of ecology–geomorphology interaction, and is a unique example of a very long‐lasting disturbance response caused by wildfire in a non‐resilient ecosystem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Alluvial rivers are composed of self-formed channels which are sensitive to disturbances in their flow and sediment-supply regimes. Regime changes commonly occur over decadal and longer timescales and can be caused by anthropogenic alterations such as dam construction and removal. Advances in numerical modeling have increased our ability to explore geomorphic adjustments over long timescales; however, many models designed to be run for decades or longer assume that banks are immovable or that channel width is constant. Since river channels often respond to disturbance by adjusting their geometry, this is a significant shortcoming. To investigate the impact of long-term sediment supply alterations on channel geometry and stability, we have adapted MAST-1D, a reach-scale bed evolution model, to incorporate functions for bank erosion, vegetation encroachment, and local avulsions. The model is designed for medium-large, coarse multithreaded rivers and can be run over long (decades–centuries) timescales. Bank erosion is a function of the mobility and transport capacity for structurally-important grains which protect the bank toe. Vegetation growth is proportional to point bar width and occurs during conditions of low shear stress. Local avulsions occur when aggradation causes channel depth to drop below a threshold. We apply the model to the Elwha River in Washington, USA with the goal of investigating if and when the river recovers from dam emplacement and removal. The Elwha was dammed for nearly 100 years, and then two dams were removed, releasing a large pulse of sediment. We have modeled the set of reaches between the two dams. Our simulations suggest that channel response to dam emplacement occurs gradually over several decades but that the channel recovers to near pre-dam conditions within about a decade following the removal. The dams leave a lasting legacy on the floodplain, which does not completely recover, even after two centuries. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
The increasing frequency and/or severity of extreme climate events are becoming increasingly apparent over multi‐decadal timescales at the global scale, albeit with relatively low scientific confidence. At the regional scale, scientific confidence in the future trends of extreme event likelihood is stronger, although the trends are spatially variable. Confidence in these extreme climate risks is muddied by the confounding effects of internal landscape system dynamics and external forcing factors such as changes in land use and river and coastal engineering. Geomorphology is a critical discipline in disentangling climate change impacts from other controlling factors, thereby contributing to debates over societal adaptation to extreme events. We review four main geomorphic contributions to flood and storm science. First, we show how palaeogeomorphological and current process studies can extend the historical flood record while also unraveling the complex interactions between internal geomorphic dynamics, human impacts and changes in climate regimes. A key outcome will be improved quantification of flood probabilities and the hazard dimension of flood risk. Second, we present evidence showing how antecedent geomorphological and climate parameters can alter the risk and magnitude of landscape change caused by extreme events. Third, we show that geomorphic processes can both mediate and increase the geomorphological impacts of extreme events, influencing societal risk. Fourthly, we show the potential of managing flood and storm risk through the geomorphic system, both near‐term (next 50 years) and longer‐term. We recommend that key methods of managing flooding and erosion will be more effective if risk assessments include palaeodata, if geomorphological science is used to underpin nature‐based management approaches, and if land‐use management addresses changes in geomorphic process regimes that extreme events can trigger. We argue that adopting geomorphologically‐grounded adaptation strategies will enable society to develop more resilient, less vulnerable socio‐geomorphological systems fit for an age of climate extremes. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

8.
IMOUNTAINE~ON-MENTSANDSEDIMENTGeologistsandgeomorphologistsareabletomakeatleasttWoimportantcontributionstomitigatinghazardsassociatedwithsedimentprocessessuchasfloodsordebrisflows.First,geomorphologistscaninterpretgeologicrecordsofthehiStoryofseddrientprocesses.Theserecordsmayprovideinsightintothemagnitude,frequency,andlocationofsedimentsourcesandtransport,aswellashillslopeandchannelresponsestosedimentprocesses.Informationonpastsedimentproductionandmovement,andchannelresponse,mayb'…  相似文献   

9.
Species invasions are known to change biotic and abiotic ecosystem characteristics such as community structure, cycling of materials and dynamics of rivers. However, their ability to alter interactions between biotic and abiotic ecosystem components, in particular bio‐geomorphic feedbacks and the resulting landscape configuration in tidal wetlands, such as tidal channels have not yet been demonstrated. We studied the impact of altered bio‐geomorphic feedbacks on geomorphologic features (i.e. tidal wetland channels), by comparing proxies for channel network geometry (unchanneled flow lengths, fractal dimension) over time between non‐invaded and invaded salt marsh habitats. The non‐invaded habitats (the south of eastern Chongming Island, Yangtze estuary, China) show little change in network geometry over time with a tendency for an increased drainage density. The invaded site (salt marshes in the north of eastern Chongming Island invaded by the exotic plant species Spartina alterniflora) showed a decreasing tendency in channel drainage density throughout and after the species invasion. This suggests that species invasions might not only affect biotic ecosystem characteristics, but also their ability to change bio‐geomorphic feedback loops, potentially leading to changes in existing geomorphologic features and therefore landscape configuration. Our results further suggest that the species invasion also altered sediment composition. Based on observations we propose a mechanism explaining the change in channel drainage density by an alteration in plant properties. The physical and physiological characteristics of the invading species Spartina alterniflora clearly differ from the native species Scirpus mariqueter, inducing different bio‐geomorphic feedback loops leading to the observed change in salt marsh channel configuration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Cuesta escarpment retreat is a principal mode of exhumation in regions of layered sedimentary rock. On the Colorado Plateau, this process acts as a mechanism for maintaining high‐relief topography and facilitating drainage divide migration. Quantitative estimates of cuesta evolution are difficult to evaluate over glacial‐interglacial timescales, and thus rates of geomorphic change along individual escarpments have mostly been constrained over millions of years. Several studies have addressed this problem by dating colluvium‐mantled talus flatirons. However, this technique has not been applied systematically on the Colorado Plateau. This study quantifies geomorphic change along a single Colorado Plateau cuesta using 36Cl surface exposure dating. We present 33 ages from a single generation of talus flatirons below the Coal Cliffs of central Utah. Landscape evolution is further constrained using 14 ages from in‐situ bedrock, 3 ages from boulders on gully interfluves, and two ages from terrace alluvium. Results suggest a colluvial apron was deposited below the cuesta beginning as early as Marine Isotope Stage 3, and the latest depositional phase occurred near the Last Glacial Maximum. A switch from apron deposition to incision initiated flatiron formation sometime between 19.7 ± 2.5 and 11.8 ± 1.6 ka, broadly coincident with the transition from glacial to interglacial conditions. Our results have several important implications. Climatic changes during the end of the last glacial period appear to have shifted the balance between deposition and erosion below the Coal Cliffs, emptying the sediment reservoir at their base and increasing their height via bedrock incision. The climatic forcing could be imparted by several mechanisms, including local controls on debris generation / mobilization and base level changes exerted by transverse streams. Similar processes may have occurred during previous glacial‐interglacial transitions, implying that the escarpment retreat processes may be partially modulated by orbitally‐controlled variations in Earth's climate over larger timescales. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
Using field observations and geochemical and digital terrain analyses, we describe the structure and thickness of the regolith across a climosequence on the island of Hawai‘i to gain insight into the relative roles of precipitation and the near‐surface hydrologic structure in determining weathering patterns. In the wet portion of the climosequence, where the long‐term water balance is positive, the regolith thickness reaches an observed maximum of ~40 m and appears limited by the geomorphic base‐level of the landscape. However, even within this thick regolith, distinct units of varying weathering intensity occur; the vertical ordering of which largely reflects differences in the initial permeability structure of the basalt flows rather than a systematic decrease in weathering intensity downwards from the ground surface. In the dry portion of the climosequence, where the long‐term water balance is negative, the regolith thickness is confined to ~1 m, is highly dependent on the inferred permeability structure of the basalt flows, and is independent of geomorphic base‐level. Weathering intensity also varies according to permeability structure and decreases in this thin regolith with distance beneath the ground surface. The abrupt change in regolith depth and character that coincides with the transition from net‐positive to net‐negative long‐term water balance implies that small changes in precipitation rates around a neutral water balance result in large changes in the distribution and depth of weathering. Together our observations indicate that the distribution and depth of weathering in basalts (and probably other lithologies) might be best understood by considering how precipitation interacts with the complicated near‐surface permeability structure over regolith‐forming timescales to weather rock in the vadose zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Biogeomorphology has been expanding as a discipline, due to increased recognition of the role that biology can play in geomorphic processes, as well as due to our increasing capacity to measure and quantify feedback between biological and geomorphological systems. Here, we provide an overview of the growth and status of biogeomorphology. This overview also provides the context for introducing this special issue on biogeomorphology, and specifically examines the thematic domains of biogeomorphological research, methods used, open questions and conundrums, problems encountered, future research directions, and practical applications in management and policy (e.g. nature-based solutions). We find that whilst biogeomorphological studies have a long history, there remain many new and surprising biogeomorphic processes and feedbacks that are only now being identified and quantified. Based on the current state of knowledge, we suggest that linking ecological and geomorphic processes across different spatio-temporal scales emerges as the main research challenge in biogeomorphology, as well as the translation of biogeomorphic knowledge into management approaches to environmental systems. We recommend that future biogeomorphic studies should help to contextualize environmental feedbacks by including the spatio-temporal scales relevant to the organism(s) under investigation, using knowledge of their ecology and size (or metabolic rate). Furthermore, in order to sufficiently understand the ‘engineering’ capacity of organisms, we recommend studying at least the time period bounded by two disturbance events, and recommend to also investigate the geomorphic work done during disturbance events, in order to put estimates of engineering capacity of biota into a wider perspective. Finally, the future seems bright, as increasingly inter-disciplinary and longer-term monitoring are coming to fruition, and we can expect important advances in process understanding across scales and better-informed modelling efforts. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

14.
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

15.
16.
Unsuccessful attempts to use process‐scale models to predict long‐term aeolian sediment transport patterns have long been a feature of aeolian research. It has been proposed that one approach to overcome these problems is to identify micro‐scale variables that are important at longer timescales. This paper assesses the contribution of two system variables (secondary airflow patterns and fetch distance) to medium‐term (months to years) dune development. The micro‐scale importance of these variables had been established during previous work at the site (Magilligan Strand, Northern Ireland). Three methods were employed. First, sand drift potentials were calculated using 2 years of regional wind data and a sediment transport model. Second, wind data and large trench traps (2 m length × 1 m width × 1·5 m depth) were used to assess the actual sediment transport patterns over a 2‐month period. Third, a remote‐sensing technique for the identification of fetch distance, a saltation impact sensor (Safire) and wind data were utilized to gauge, qualitatively, sediment transport patterns over a 1‐month period. Secondary airflow effects were found to play a major role in the sediment flux patterns at these timescales, with measured and predicted rates matching closely during the trench trap study. The results suggest that fetch distance is an unimportant variable at this site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Sediment delivery from hillslopes to trunk streams represents a significant pathway of mass transfer in the landscape, with a large fraction facilitated by gully systems. The internal gully geomorphic dynamics represent a considerable gap in many landscape and empirical erosion models, therefore a better understanding of these processes over longer timescales (10–104 years) is needed. This study analyses the sediment mass balance and storage dynamics within a headwater gully catchment in central Europe over the last ~12 500 years. Human induced erosion resulted in hillslope erosion rates ~2.3 times higher than under naturally de‐vegetated conditions (during the Younger Dryas), however the total sediment inputs to the gully system (and therefore gully aggradation), were similar. Net gully storage has consistently increased to become the second largest term in the sediment budget after hillslope erosion (storage is ~45% and ~73% of inputs during two separate erosion and aggradation cycles). In terms of the depletion of gully sediment storage, the sediment mass balance shows that export beyond the gully fan was not significant until the last ~500 years, due to reduced gully fan accommodation space. The significance of storage effects on the gully sediment mass balance, particularly the export terms, means that it would be difficult to determine the influences of human impact and/or climatic changes from floodplain or lake sedimentary archives alone and that the sediment budgets of the headwater catchments from which they drain are more likely to provide these mechanistic links. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Extreme events such as storm surges and tsunamis in combination with subsidence of densely populated coastal areas pose an increasing threat to millions of people in the tropics. Intertidal mangrove forests may form a natural protection against some extreme events, but have also widely been destroyed by coastal development. The establishment of mangroves and the maintenance of their stability over the short‐ to long‐term requires an understanding of sedimentary processes and landforms in the coastal zone, making geomorphology a crucial, but sometimes neglected discipline when attempting restoration for disaster risk reduction. Mangrove geomorphic setting varies markedly across the tropics, depending on abiotic parameters such as suspended sediment supply and tidal range, with different restoration strategies suitable for each. In this study we provide a global categorization of mangrove geomorphic settings, based on the literature and global remote sensing data. The world's mangroves can be broadly defined as: (1) minerogenic and high tidal range; (2) minerogenic and low tidal range; and (3) organogenic and low tidal range. We further discuss restoration and management approaches most suitable for each geomorphic setting. Overall, this study can be used to inform managers about the relevance of geomorphic knowledge for successful mangrove restoration, how an understanding of geomorphology can influence site selection and restoration success, and how to match specific restoration methods to the prevailing geomorphic context. The stronger incorporation of geomorphic knowledge into site planning and design will improve the success rates of restoration for this important and globally threatened ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Proglacial slopes provide suitable conditions for observing the co-development of abiotic and biotic systems. The frequency and magnitude of geomorphic processes and plant composition govern this interplay, which is described in the model of biogeomorphic succession. In high mountain environments, this model has only been tested in a limited number of studies. The study aimed to quantify small-scale sediment transport via erosion plots along a plant cover gradient and to investigate the influence of sediment transport on plant communities. We aimed to generate quantitative data to test existing biogeomorphic models. Small-scale biogeomorphic interactions were investigated on 30 test plots of 2 × 3 m size on proglacial slopes of the Gepatschferner (Kaunertal) in the Austrian Alps during the snow-free summer months over three consecutive years. The experimental plots were established on slopes along a plant cover gradient. A detailed vegetation survey was carried out to capture biotic conditions, and specific sediment yield was measured at each plot. Species abundance and composition at each site reflected successional stages. Additional environmental parameters, such as terrain age, geomorphometry, grain size distribution, soil nutrients, and precipitation, were also included in the analyses. We observed two pronounced declines in geomorphic activity on plots with both above 30% and above 75% plant cover. Nonmetric multidimensional scaling showed distinct clusters of vegetation composition that mainly followed a successional gradient. Sites that were affected by high-magnitude geomorphic events showed different environmental conditions and species communities. Quantified process rates and observed species composition support the concept of biogeomorphic succession. The findings help to narrow down a biogeomorphic feedback window.  相似文献   

20.
Arid alluvial fan and fluvial dry wash surfaces in Stonewall Flat, Nevada, USA, are characterized using surface geomorphic surveys, soil pits, botanical line surveys, and varnish microlamination dating techniques. Active and abandoned washes, and active fan surfaces are dominated by primary geomorphic processes of high‐energy sedimentation from flash floods. These surfaces are characterized by bar and swale topography, a lack of stone pavements, soil horizons, and rock varnish. Younger terraces and slightly older intermediate fan surfaces are in transition from primary sedimentation processes to lower energy secondary surface‐modifying processes of sheet wash and eolian transport and deposition. These surfaces are characterized by faint to no bar and swale topography, incipient to moderately well‐developed pavements and soil horizons, and abundant coppices. Old and stable fan surfaces are dominated by lower energy secondary processes and manifest well‐developed pavements, soils, and sparse coppices around widely distributed shrubs. Varnish microlamination dating yields ages of 13·15 ka for intermediate fan surfaces and 25·55 to 86·75 ka for stable fan surfaces. Plant communities co‐developing with these surfaces affect and are affected by both primary and secondary geomorphic fan processes. Relatively active surfaces contain few woody species. Co‐dominance of shrubs and annuals with abundant annuals between the shrubs is characteristic of surfaces transitional from primary processes to secondary processes. Stable surfaces dominated by secondary processes are characterized by woody perennials, with long‐lived woody species inhabiting the oldest surfaces. Feedback mechanisms between early botanical communities and eolian deposition affect coppice and pavement development. In turn, these surface features control both the composition and distribution of botanical communities on older, more stable surfaces. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号