首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Urban expansion is a hot topic in land use/land cover change(LUCC) researches. In this paper, maximum entropy model and cellular automata(CA) model are coupled into a new CA model(Maxent-CA) for urban expansion. This model can help to obtain transition rules from single-period dataset. Moreover, it can be constructed and calibrated easily with several steps.Firstly, Maxent-CA model was built by using remote sensing data of China in 2000(basic data) and spatial variables(such as population density and Euclidean distance to cities). Secondly, the proposed model was calibrated by analyzing training samples,neighborhood structure and spatial scale. Finally, this model was verified by comparing logistic regression CA model and their simulation results. Experiments showed that suitable sampling ratio(sampling ratio equals the proportion of urban land in the whole region) and von Neumann neighborhood structure will help to yield better results. Spatial structure of simulation results becomes simple as spatial resolution decreases. Besides, simulation accuracy is significantly affected by spatial resolution.Compared to simulation results of logistic regression CA model, Maxent-CA model can avoid clusters phenomenon and obtain better results matching actual situation. It is found that the proposed model performs well in simulating urban expansion of China. It will be helpful for simulating even larger study area in the background of global environment changes.  相似文献   

2.
Urbanization is the most typical form of land use/cover change, and exploration of the driving mechanism of urban growth and the prediction of its future changes are very important for achieving urban sustainable development. In view of the ability of a multi-agent system to simulate a complex spatial system and from the perspective of combining macroscopic and microscopic decision-making behaviors of agents, a spatiotemporal dynamical urban growth simulation model based on the multi-agent systems has been developed. In this model, macroscopic land use planning behaviors implemented by macroagents and microscopic land use selection behaviors autonomously generated by microagents interact within two-dimensional spatial cells. Furthermore, the urbanization process is promoted through joint decision-making by macroagents and microagents. Considering the central region of the coastal industrial city Lianyungang as the study area, we developed three target scenarios on the basis of current trends, economic development priorities, and environmental protection priorities. Moreover, the corresponding urban growth scenarios were simulated and analyzed. The simulation results show that by combining the macroscopic and microscopic decision-making behaviors of agents to simulate spatiotemporal dynamical urban growth based on the multi-agent systems, the proposed model can provide a useful spatial exploratory tool for explaining the driving mechanism of urbanization and providing decision-making support for urban management.  相似文献   

3.
An event‐based model is used to investigate the impact of the spatial distribution of imperviousness on the hydrologic response of a basin characterized by an urban land use. The impact of the spatial distribution of imperviousness is investigated by accounting for its location within the basin when estimating the generated runoff and the hydrologic response. The event model accounts for infiltration and saturation excess; the excess runoff is routed to the outlet using a geomorphologic unit hydrograph. To represent the spatial distribution of rainfall and imperviousness, radar and remotely derived data are used, respectively. To estimate model parameters and analyse their behaviour, a split sample test and parameter sensitivity analysis are performed. From the analysis of parameters, we found the impervious cover tends to increase the sensitivity and storm dependency of channel routing parameters. The calibrated event model is used to investigate the impact of the imperviousness gradient by estimating and comparing hydrographs at internal locations in the basin. From this comparison, we found the urban land use and the spatial variability of rainfall can produce bigger increases in the peak flows of less impervious areas than the most urbanized ones in the basin. To examine the impacts of the imperviousness pattern, scenarios typifying extreme cases of sprawl type and clustered development are used while accounting for the uncertainty in parameters and the initial condition. These scenarios show that the imperviousness pattern can produce significant changes in the response at the main outlet and at locations internal to the overall watershed. Overall, the results indicate the imperviousness pattern can be an influential factor in shaping the hydrologic response of an urbanizing basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We explore the potential of using a complexity measure from statistical physics as a streamflow metric of basin-scale hydrologic alteration. The complexity measure that we employ is a non-trivial function of entropy. To determine entropy, we use the so-called permutation entropy (PE) approach. The PE approach is desirable in this case since it accounts for temporal streamflow information and it only requires a weak form of stationarity to be satisfied. To compute the complexity measure and assess hydrologic alteration, we employ daily streamflow records from 22 urban basins, located in the metropolitan areas of the cities of Baltimore, Philadelphia, and Washington DC, in the United States. We use urbanization to represent hydrologic alteration since urban basins are characterized by varied and often pronounced human impacts. Based on our application of the complexity measure to urban basins, we find that complexity tends to decline with increasing hydrologic alteration while entropy rises. According to this evidence, heavily urbanized basins tend to be temporally less complex (less ordered or structured) and more random than basins with low urbanization. This complexity loss may have important implications for stream ecosystems whose ability to provide ecosystem services depend on the flow regime. We also find that the complexity measure performs better in detecting alteration to the streamflow than more conventional metrics (e.g., variance and median of streamflow). We conclude that complexity is a useful streamflow metric for assessing basin-scale hydrologic alteration.  相似文献   

5.
Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quantitative relationship with thermal environment are still poorly understood, resulting in ineffective application in urban ecological planning and management.Through the integration of "spatial structure theory" in urban geography and "surface energy balance" in urban climatology, we proposed a new concept of urban surface structure and thermal environment regulation to reveal the mechanism between urban spatial structure and surface thermal environment. We developed the EcoCity model for regulating urban land cover structure and thermal environment, and established the eco-regulation thresholds of urban surface thermal environments. Based on the comprehensive analysis of experimental observation, remotely sensed and meteorological data, we examined the spatial patterns of urban habitation, industrial, infrastructure service, and ecological spaces. We examined the impacts of internal land-cover components(e.g., urban impervious surfaces, greenness, and water) on surface radiation and heat flux. This research indicated that difference of thermal environments among urban functional areas is closely related to the proportions of the land-cover components.The highly dense impervious surface areas in commercial and residential zones significantly increased land surface temperature through increasing sensible heat flux, while greenness and water decrease land surface temperature through increasing latent heat flux. We also found that different functional zones due to various proportions of green spaces have various heat dissipation roles and ecological thresholds. Urban greening projects in highly dense impervious surfaces areas such as commercial, transportation, and residential zones are especially effective in promoting latent heat dissipation efficiency of vegetation, leading to strongly cooling effect of unit vegetation coverage. This research indicates that the EcoCity model provides the fundamentals to understand the coupled mechanism between urban land use structure and surface flux and the analysis of their spatiotemporal characteristics. This model provides a general computational model system for defining urban heat island mitigation, the greening ratio indexes, and their regulating thresholds for different functional zones.  相似文献   

6.
A critical issue in urban cellular automata (CA) modeling concerns the identification of transition rules that generate realistic urban land use patterns. Recent studies have demonstrated that linear methods cannot sufficiently delineate the extraordinary complex boundaries between urban and non-urban areas and as most urban CA models simulate transitions across these boundaries, there is an urgent need for good methods to facilitate such delineations. This paper presents a machine learning CA model (termed MachCA) with nonlinear transition rules based on least squares support vector machines (LS-SVM) to simulate such urban growth. By projecting the input dataset into a high dimensional space using the LS-SVM method, an optimal hyper-plane is constructed to separate the complex boundaries between urban and nonurban land, thus enabling the retrieval of nonlinear CA transition rules. In the MachCA model, the transition rules are yes–no decisions on whether a cell changes its state or not, the rules being dynamically updated for each iteration of the model implementation. The application of the MachCA for simulating urban growth in the Shanghai Qingpu–Songjiang area in China reveals that the spatial configurations of rural–urban patterns can be modeled. A comparison of the MachCA model with a conventional CA model fitted by logarithmic regression (termed LogCA) shows that the MachCA model produces more hits and less misses and false alarms due to its capability for capturing the spatial complexity of urban dynamics. This results in improved simulation accuracies, although with only less than 1 % deviation between the overall errors produced by the MachCA and LogCA models. Nevertheless, the way MachCA model use in retrieving the transition rules provides a new method for simulating the dynamic process of urban growth.  相似文献   

7.
China is a country with vast population and scarce arable land per capita. China’s population is more than 1.2 billion, about one-fifth of the world’s total, while the arable land area is only 0.106 hm2 per capita, less than half of the world’s average of 0.23 hm2[1]. Arable land conservation/food security has been acknowl- edged as one of the main factors affecting the sustain- able socio-economic development in China[2], which catches the special attention of many scholars at home and abr…  相似文献   

8.
Sustainable management and exploitation policies as well as suitable conservation and mitigation strategies are mandatory to preserve cultural heritage and to reduce threats, weathering phenomena, and human actions that may produce significant deterioration and alteration of cultural heritage and “its environment”. In this context, remote sensing technologies can offer useful data to timely update information and documentation and set up reliable tools for systematic monitoring of cultural properties. In this study, multi-temporal and multi-sensor satellite data from Corona, Landsat, Spot, Quickbird, and Sentinel-2A have been exploited along with spatial analysis to investigate the area of the Theban temples at west Luxor (Egypt), severely threatened by uncontrolled urban sprawl. The results from our analyses showed that the urban expansion continuously occurred during the whole investigated period causing an increasing in urban areas around (1) 1.316 km2 from 1967 to 1984, (2) 1.705 km2 from 1984 to 2000, (3) 0.978 km2 from 2000 to 2003, (4) 2.314 km2 from 2003 to 2011, and (5) 1.377 km2 from 2011 to 2017. The random urban expansion caused bad sewage networks and high groundwater depth which in turn affected the archaeological areas directly (as evident on a landscape view) and indirectly by causing changes (growing) in the level of ground water depth and increasing and accelerating weathering phenomena. The quantification and mapping of urban sprawl enabled us not only to quantify and spatially characterize urban sprawl but also to create a model to mitigate the impact and provide some operational recommendations to protect the archaeological site. Outcomes from our analysis pointed out that today the tremendous availability of advanced remote sensing data has opened new prospectives unthinkable several years ago.  相似文献   

9.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
孙伟 《湖泊科学》2012,24(1):9-16
随着发达地区经济社会的快速发展,建设用地急剧扩张,改变地表下垫面水文条件,成为导致区域水环境不断恶化的重要因素,并引发一系列的资源环境问题.为了促进资源环境与经济社会均衡发展,近年来地理学界开展了大量空间开发功能分区和适宜性分区的研究,为区域空间管理和建设用地调控提供科学依据,但是这些研究大多以单一行政区为对象,缺少流域等跨行政区的自然地理单元的分区研究,忽视了流域经济社会发展与资源环境保护的整体性.为此,本文在借鉴相关分区研究的基础上,以太湖流域为例,探讨了流域单元空间开发适宜性分区指标选择与综合评价等技术方法,将太湖流域划分为高适宜区、中等适宜区、低适宜区和不适宜区等四种类型,并采用数据包络分析方法,探讨了建设用地配置规模与空间开发适宜性的对应关系和均衡程度,据此判断流域空间开发的失衡状态.  相似文献   

11.
生境质量在一定程度上决定了区域生物多样性维持能力的高低,评估区域生境质量对土地利用/覆被变化的响应,可以间接衡量区域生物多样性维持功能的时空变化,为生物多样性保护提供定量参考.本文以南四湖流域为例,运用InVEST-Habitat Quality模型模拟评价1980-2015年流域生境质量的时空变化,定量评估湖区退耕还湿还林和丘陵地区退耕还林2种政策情景对区域生境质量改善的效果.结果表明:35 a间流域耕地、林地和草地大量转化为建设用地,城市建设用地增长40.23%,湖泊面积减少35.56%,主要转化为渔业坑塘;南四湖流域整体生境质量处于较低水平,近35 a来快速发展的工农业生产和不断扩张的城市用地使得流域生境质量呈现降低趋势,当前平均生境质量为历年最低(0.20).环境保护力度和人类活动剧烈程度的差异导致生境质量在空间上呈现出西部平原区(0.19) < 东部丘陵山区(0.44) < 南四湖湖区(0.81)的分布特征.近35 a来生境稀有度(即生境保存完整性指数)较高的区域主要是湖区主体和流域东部丘陵山区,但部分边缘湖区生境稀有度指数却极低,受人类活动干扰剧烈,主要原因在于沿湖渔业养殖和农业活动.定量评估湖区退耕还林还湿和流域丘陵旱地退耕还林2种政策情景对生境质量的改善效果,结果表明湖区退耕还湿还林能使湖区生境质量上升9.21%,而丘陵旱地退耕还林可使流域平均生境质量提高16.75%.  相似文献   

12.
Soil moisture plays an important role in hydrology. Understanding factors (such as topography, vegetation, and meteorological conditions) that influence spatio‐temporal variability in soil moisture, and how this influence is manifested, is important for understanding hydrological processes. A number of distributed (quasi‐)physical hydrological models have been developed to investigate this subject. Previous studies have shown that the spatial differences in the distribution of soil types (residual and colluvial soils) dominantly reflect spatio‐temporal fluctuations in soil moisture and runoff. We present a methodology for assessing the spatial distribution of residual and colluvial soils, which differ with respect to their physical characteristics, in a 0·88 km2 forested catchment with complex topography and a complex land‐use history. Our method is based on penetration resistance profile data; in this data set, each data point represents soil physical characteristics within an area of about 25 m2. If the spatial distribution of soils under similar meteorological, geological, historical land use, and other conditions could be characterized on the basis of similarity in topographic features, then the spatial distribution of soil could be predicted based on relationships between various topographic indices (e.g. topographic index and local slope). We tested whether our model correctly assessed the reference data. The model's results were 90·5% correct for residual soils and 87·3% correct for colluvial soils. Further studies will quantify the relationships between topographic features of land covered by residual and colluvial soils and changes in spatio‐temporal variations in the catchment (e.g. vegetation and land use) as a function of geology or meteorology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The expanded area and structure of urban lands and landscape features in Ürümqi City are analyzed using RS and GIS means based on the MSS image in 1975 and the TM images in 1990, 1999 and 2002, as well as other related maps. On which the scale, intensity and spatial differentiation of the expansion of the Ürümqi urban area during different periods are lucubrated. The results reveal that urban expansion was rapid during the periods of 1949–1965 and 1975–1990, and that it was stable after the 1990s. The urban expansion pattern was significantly different during different time periods: the urban area was expanded outwards based on old districts in a spanned development pattern during the period of 1949–1965; development was stagnant during the period of 1965–1975; urban expansion developed mainly in old districts in a grouped way during the period of 1975–1990. The trend of urban expansion along the traffic lines was obvious, and the direction of urban expansion was dominated by the south-north zonal expansion and supplemented by east-west axial expansion; urban expansion reached the development stage of “multiple centers and multiple districts” after the 1990s, and urban networks were developed more precisely after this time. The sources for urban expansion were mainly cultivated lands, grasslands and unused lands; during urban expansion, the land area devoted to traffic lines, residential areas, dispersive industrial and mineral areas, and garden plots was rapidly enlarged.  相似文献   

14.
《水文科学杂志》2013,58(5):917-935
Abstract

For urban drainage and urban flood modelling applications, fine spatial and temporal rainfall resolution is required. Simulation methods are developed to overcome the problem of data limitations. Although temporal resolution higher than 10–20 minutes is not well suited for detailed rainfall—runoff modelling for urban drainage networks, in the absence of monitored data, longer time intervals can be used for master planning or similar purposes. A methodology is presented for temporal disaggregation and spatial distribution of hourly rainfall fields, tested on observations for a 10-year period at 16 raingauges in the urban catchment of Dalmuir (UK). Daily rainfall time series are simulated with a generalized linear model (GLM). Next, using a single-site disaggregation model, the daily data of the central gauge in the catchment are downscaled to an hourly time scale. This hourly pattern is then applied linearly in space to disaggregate the daily data into hourly rainfall at all sites. Finally, the spatial rainfall field is obtained using inverse distance weighting (IDW) to interpolate the data over the whole catchment. Results are satisfactory: at individual sites within the region the simulated data preserve properties that match the observed statistics to an acceptable level for practical purposes.  相似文献   

15.
We hypothesize that the spatial and temporal variation in large-scale soil moisture patterns can be described by a small number of spatial structures that are related to soil texture, land use, and topography. To test this hypothesis, an empirical orthogonal function (EOF) analysis is conducted using data from the 1997 Southern Great Plains field campaign. When considering the spatial soil moisture anomalies, one spatial structure (EOF) is identified that explains 61% of the variance, and three such structures explain 87% of the variance. The primary EOF is most highly correlated with the percent sand in the soil among the regional characteristics considered, but the correlation with percent clay is largest if only dry days are analyzed. When considering the temporal anomalies, one EOF explains 50% of the variance. This EOF is still most closely related to the percent sand, but the percent clay is unimportant. Characteristics related to land use and topography are less correlated with the spatial and temporal variation of soil moisture in the range of scales considered.  相似文献   

16.
M. Nouh 《水文研究》1990,4(2):103-120
Data on performance of a geomorphologic rainfall-runoff model in simulating observed flash flood hydrographs in 32 arid catchments have been analysed. The catchments, which are located in the southwest region of Saudi Arabia, vary in their size, slope of land, and characteristics of soils, and are in zones of different rainstorm characteristics. The sensitivity of the model accuracy with various catchment and rainfall characteristics has been investigated. Size, followed by rate of infiltration and slope of land, are the most effective catchment characteristics affecting the accuracy. In addition, the accuracy varies with spatial and temporal rainfall variation, total rainfall depth, and length of the dry period between two successive rainstorms over catchment. It is sensitive to temporal rainfall variation more than spatial rainfall variation, and to the dry period more than total rainfall depth. Generally, the model did not display an accuracy approaching that of the observations, especially in simulating peak flowrates in large size infiltrating catchments having high temporal rainstorm variation. Guidelines on the best use of the model in arid catchments were proposed.  相似文献   

17.
Urbanization in China has expanded at an unprecedented speed since the declaration of "Reform and Open Policy"and presented many challenges. Unbalanced regional development, appearance of super megacities and concomitant problems,and conflicts between urbanization and cultivated land protection are three critical problems that Chinese urbanization has to face. To develop new plans for foreseeable future urbanization in China, it is critical to understand the evolving history of cities across China. This study maps urban expansion of 60 typical Chinese cities based on large amount of remote sensing data and the labor-intensive image interpretation method, in order to understand the history of urban expansion from the 1970 s to 2013.Results showed that area of cities expanded 5.23 times compared to their area in the 1970 s. Urban expansion in China accelerated three times(1988–1996, 1999–2006, and 2009–2011) and decelerated three times(1997–1998, 2007–2008, and 2012–2013) over the 40 years. The urban area of South China expanded most significantly 9.42 times, while the urban area in Northeast China expanded only 2.37 times. The disparity among different administrative ranks of cities was even greater than(3.81 times) the differences among different regions. Super megacities have been continuously expanding at a fast rate(8.60-fold), and have not shown obvious signs of slowing down. The proportion of cultivated land among the land sources for urban expansion decreased to a small extent in the 1990 s, but cultivated land continues to be the major land source for urban expansion. Effective future urbanization needs controlling the expansion scale of large cities and reasonably developing medium and small cities, as well as balancing regional development.  相似文献   

18.
Based on the global land cover data at 30 m resolution (GlobeLand30) in the year 2000 and 2010, the urban expansion process of 320 cities in China was analyzed using lognormal regression, and the expansion model were established. Three metrics were presented for the models, including the peak position, the full width at half maximum, and the skewness. It was found that the three metrics could reveal different patterns of the urban expansion process of cities with different sizes. Specifically, cities with larger size tend to expand outward strongly, and their expansion intensity and influence are likely to be higher. Moreover, most cities’ expansion occurs around the urban core with spatially limited influence. In addition, it was also found that the city’s expansion intensity is related to the city size. These results showed that the lognormal regression model could describe the distribution of urban expansion with effectiveness and robustness.  相似文献   

19.
对耦合了Noah陆面模式和单层城市冠层模式的WRF(Weather Research and Forecasting)模式系统进行了改进和优化,通过对2010年8月6-7日北京地区晴天个例的模拟试验,检验了优化前后模式系统的模拟能力,分析研究了该个例中城市边界层的特征及日变化.另外,使用优化后的模拟系统通过两组敏感性试验研究了京津城市下垫面对海风的影响.结果表明,优化方案能够显著提高模式系统对该个例的模拟性能,模式系统基本能够模拟出北京夏季边界层的日变化特征,精确的地表使用类型分类等地理信息数据对提高模式预报的准确度有着至关重要的作用,京津城市对海风的发展和推进过程有明显影响,能够阻碍海风的推进、加强风场的水平辐合和垂直上升气流,北京城市下垫面还能在海风到达前增加其强度和推进速度,并在海风经过后延缓其消亡、增加其推进距离.  相似文献   

20.
The influence of land use patterns on water quality in a river system is scale‐dependent. In this study, a four‐order hierarchical arrangement method was used to select water sampling sites and to delineate sub‐basins in the Daliao River Basin, China. The 20 sub‐basins were classified into four spatial scales that represented four different stream orders. Pearson correlation analysis was used to quantify relationships between land use composition and the river's physical‐chemical variables for all samples collected. This analysis showed that the presence of forest cover was associated with higher water quality at the scale of the whole basin. The scale effects of land use patterns on water quality were then examined using stepwise multiple regression analysis that compared different land use types with water quality variables. The results from this analysis showed that urban areas, as opposed to forest areas, became the most significant contributors of water pollutants when scale effects were considered. The influence of urban land cover on water pollution was significantly higher at larger scales. The lack of a significant regression correlation for the forest land use type at smaller scales revealed that forest located upstream of the Daliao River Basin did not provide a buffer for improved water quality. Further analysis showed that this result could be because of disproportionate spatial distributions for forest and urban land use types. The topographic characteristics of sub‐basins, such as average slope (S) and size (A), were determined to be secondary explanatory variables that affected land use impacts on stream water quality. Areas with steep slopes were associated with increased water oxygenation, whereas areas with flatter slopes were associated with higher concentrations of pollutants. These results are significant because they can provide a better understanding of the appropriate spatial scale required for effective river basin management in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号