首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
根据地震波衰减特性,采用一维速度模型开展了快速测定辐射能量ES和能量震级Me的方法研究。利用全球地震台网和国家数字测震台网提供的宽频带资料,测定了2014—2019年间MW≥6.0的115次浅源地震的辐射能量和能量震级,将计算结果与其它机构的结果进行对比。结果表明:利用本文方法可在得到地震数据半小时内计算出稳定的Me,且本文的测定结果与美国地震学研究联合会的结果基本一致。地震造成的灾害与能量震级的大小密切相关,当Me>MW时,地震灾害较为严重;在所有的地震类型中,发震断层类型为走滑型时,其地震辐射能量的效率高,Me明显大于MW。通过分析2018年2月4日和2019年4月18日台湾花莲两次MW6.1地震能量释放的差异得出,发生在相似位置且具有相同的震源机制的两次地震,尽管它们的MW相同,但Me相差很大,接近0.5。Me与MW的差异表明,MW只能获得有关震源的静态特征,它与地震引起的断裂面积、断裂平均位错等静态构造效应密切相关,而Me可以提供震源的动态信息,从而客观评价地震的破坏强度。因此,本文使用的方法既能准确测定能量震级Me又能极大提高其测定速度,非常适用于快速反应系统。本研究可以为未来地震台网将能量震级Me作为日常产出震级提供参考,为快速评估大地震造成的灾害提供更多信息。   相似文献   

2.
震源特征可通过震源参数量化,震后快速测定震源参数,对于研究区域构造特征、地震的震源性质和孕育演化过程、开展震害评估和地震应急响应都具有重要意义.本研究采用区域地震台网和全球地震台网提供的宽频带波形资料,使用近震全波形反演方法得到了2022年1月8日青海门源MS6.9地震的地震矩、矩震级和震源机制解等静态震源参数,并测定了地震辐射能量、能量震级和破裂持续时间等动态震源参数.结果显示:(1)本次地震为一次高倾角的走滑型地震,震源机制解节面I走向194°、倾角87°、滑动角175°,节面II走向285°、倾角85°、滑动角3°,地震矩为8.5×1018N·m,转化成矩震级为6.6,矩心深度为3 km.结合动态震源参数,可确定节面II为地震断层面;(2)地震辐射能量为4.3×1014J,转化成能量震级为6.8,高于矩震级;(3)地震呈现双侧破裂特征,破裂持续时间为11 s;(4)能矩比为5.1×10-5,视应力为1.53 MPa,应力降为6.58 MPa,描述断层破裂复杂度的辐射能量增强因子为34;(5)综...  相似文献   

3.
2013年4月20日四川芦山MW6.7 (MS7.0)地震参数的测定   总被引:2,自引:0,他引:2  
2013年4月20日四川芦山MW6.7(MS7.0)地震发生后, 中国地震台网中心(CENC)发布了地震速报参数. 该文利用中国国家地震台网97个台站的资料对地震速报参数进行了修订, 得出: 四川芦山MW6.7地震的发震时刻为北京时间8时2分47.5秒(世界时间0时2分47.5秒), 震中位置为30.30°N、 102.99°E, 震源深度17 km. 该地震的面波震级为MS7.0, 短周期体波震级为mb6.0, 中长周期体波震级为mB7.0; 利用波形反演的方法计算了震源机制解, 得到的最佳双力偶解的参数分别为节面Ⅰ: 走向17°/倾角48°/滑动角80°; 节面Ⅱ: 走向212°/倾角43°/滑动角101°, 矩震级为MW6.7. 中国地震台网中心发布本次地震为面波震级MS7.0, 而美国地质调查局(USGS)国家地震信息中心(NEIC)发布为矩震级MW6.6. 为了消除这种差别, 建议我国也应将矩震级作为对外发布的首选震级, 使震级的发布与国际接轨.   相似文献   

4.
北京时间2020年7月23日04时07分,西藏自治区那曲市尼玛县发生MS6.6地震,震源深度10 km,震中位置为(33.19°N,86.81°E)。主震发生当日18时50分,发生一次MS4.8强余震,震源深度为10 km。本文基于西藏、青海、新疆区域波形资料,采用ISOLA近震全波形方法对这两次地震进行震源机制反演。结果显示,尼玛MS6.6主震的最佳断层面解为:节面Ⅰ走向8°/倾角46°/滑动角?93°,节面Ⅱ走向191°/倾角44°/滑动角?87°;矩震级MW6.4,最佳矩心深度7 km。震源区应力主轴的空间取向为:主压力轴P的方位角220°、倾伏角88°,主张力轴T方位角99°、倾伏角1°。MS4.8强余震的最佳断层面解为:节面Ⅰ走向12°/倾角47°/滑动角?106°,节面Ⅱ走向214°/倾角45°/滑动角?74°;矩震级MW5.0,最佳矩心深度6 km。震源区应力主轴的空间取向为:主压力轴P的方位角207°、倾伏角78°,主张力轴T方位角113°、倾伏角1°。震源机制反演结果表明,这两次地震均为以正断型为主的地震事件,与震源区附近先前地震的震源机制有较好的一致性。结合周边地质构造和余震分布,我们认为尼玛MS6.6地震可能是由位于日干配错断裂和依布茶卡盆地西缘断裂之间的一条正断层活动所引发的。   相似文献   

5.
本文介绍了2019年4月7日北京海淀M2.9及4月14日北京怀柔M3.0地震的基本参数速报情况,并利用区域台网波形数据,采用全波形反演方法ISOLA获得了这两次地震的最佳双力偶解。反演结果显示:M2.9地震的节面Ⅰ走向29°,倾角70°,滑动角?149°,节面Ⅱ走向288°,倾角61°,滑动角?22°;矩心深度14 km,矩震级MW=3.4。M3.0地震的节面Ⅰ走向93°,倾角84°,滑动角?30°,节面Ⅱ走向186°,倾角60°,滑动角173°;矩心深度16 km,矩震级MW=3.4。震源机制反演结果表明,两次地震均为走滑型为主的地震,其与震源区域附近历史地震震源机制解具有相同性质。   相似文献   

6.
2022年1月8日,青海门源地区发生MS6.9地震,本文利用CAP方法反演了主震震源机制解和震源深度。结果显示,断层节面Ⅰ:走向191°/倾角62°/滑动角173°,节面Ⅱ:走向284°/倾角82°/滑动角21°。此次地震为走滑型地震,最佳矩心震源深度约3 km,矩震级为MW6.7。结合震源机制解和定位结果分析认为,节面Ⅱ可能为实际破裂面,本次地震发生在冷龙岭断裂和托莱山断裂的交汇部位,本次地震与2016年和1986年2次M6.4地震震源机制解不同,显示出该区域复杂的构造背景。   相似文献   

7.
2012年11月20日在宁夏银川市永宁县与兴庆区交界处发生MS4.6地震,为了更好地了解此次地震的发震构造,首先采用Hypo2000绝对定位方法得到该地震的震中位置及余震分布;然后采用CAP方法反演了此次地震的震源机制解和震源深度. 反演结果表明,永宁MS4.6地震是一个带有少量逆冲分量的右旋走滑地震.该地震矩震级为MW4.3,最佳双力偶解为:节面Ⅰ走向11°,倾角74°,滑动角171°;节面Ⅱ走向103°,倾角81°,滑动角16°.最佳震源深度为8km左右.从该地震震中和震源机制解以及震源深度剖面分布来看,这次地震很可能发生在银川隐伏主断层西侧的次级断层上.   相似文献   

8.
本文基于有限断层模型反演方法,利用区域宽频带数据反演了2021年5月云南漾濞MS6.4地震的震源破裂过程,结果显示:此次地震的发震断层走向为SE向,主要以右旋走滑为主.破裂主要发生在震源东南侧,最大错动量约为0.55 m,位于深度约9 km处,发生明显破裂的深度约达13 km.此次地震释放的标量地震矩为1.48×1018N·m,相当于矩震级MW6.05.地震能量主要在前11 s释放.在深度为6~8 km处破裂速度有明显的变快,可能加剧了地表的震动.  相似文献   

9.
能量震级及其测定   总被引:1,自引:1,他引:0  
对于地震灾害与风险评估,人们更关注的是地震辐射能量ES和能量震级Me的大小,能量震级Me反映震源动态特征,适合描述地震的潜在破坏性。本文介绍地震波能量ES和地震矩M0的物理意义及能量震级Me的定义和测定方法,并测定得到2017年8月8日四川九寨沟MS 7.0地震的能量震级Me为6.3。  相似文献   

10.
本文基于有限断层模型反演方法,利用区域宽频带数据反演了2021年5月云南漾濞MS6.4地震的震源破裂过程,结果显示:此次地震的发震断层走向为SE向,主要以右旋走滑为主.破裂主要发生在震源东南侧,最大错动量约为0.55 m,位于深度约9 km处,发生明显破裂的深度约达13 km.此次地震释放的标量地震矩为1.48×1018N·m,相当于矩震级MW6.05.地震能量主要在前11 s释放.在深度为6~8 km处破裂速度有明显的变快,可能加剧了地表的震动.  相似文献   

11.
云南大理MS6.4地震和意大利拉奎拉(L'Aquila)MW6.3地震都因未能准确做出危险性预测给人民生命财产造成重大损失。哪些工作可能向政府和公众说明“哪里可能发生地震”、“最大量级多大”、“未来发震趋势如何”等问题都值得深入思考。本文根据天气预报思路,将地震活动按丛集性做分区处理,从各区M-t序列、3级地震活动性、2年来地震能量释放升级趋势、G-R关系等几方面分析了这两次地震主震发生前的地震活动特征,对比分析了它们之间的相似性。认为这两次地震的相似性有以下几点:①震源深度都比较浅。云南大理MS6.4地震震源深度8 km,意大利拉奎拉MW6.3地震震源深度8.8 km;②b值相近。云南大理MS6.4地震b=0.59,意大利拉奎拉MW6.3地震b=0.61。G-R关系外推震级相近,均为MGR6左右;③M-t图序列地震能量释放都呈升级趋势,地震活动也相似。平静打破后3级以上地震活跃,都出现震群现象,地震能量释放呈加速状态;④都属于前震-主震-余震型序列。意大利拉奎拉MW6.3地震主震前最大前震为MW5.2;云南大理MS6.4地震主震前最大前震为MS5.6,且前震震群特征明显。同时,本文讨论了按地震丛集性划分区域的合理性,认为按地震丛集性划分区域更容易把握区域地震活动的特点。这两次地震发生在不同区域,构造差异极大,属不同错动类型,用分区G-R关系和M-t序列分析,都得出较好的结果,再次说明了分区G-R关系和M-t序列分析对判断地震危险性的普适性特征,这为下一步产出“地震危险性云图”提供了依据。   相似文献   

12.
The Eastern Himalayan Syntaxis(EHS)is a critical region for studying the tectonic evolution of Tibetan plateau, which was affected by the intense seismic activities. We use the theory of moment balance, GPS velocities and historical earthquake records to analyze the moment deficits in the EHS, assess the future seismicity and further to predict the recurrence interval of the 1950 Chayu MS8.6 earthquake. We first collected multiple sets of GPS velocity fields and combined them to reduce the systematic bias. Then a micro-blocks model, constrained by GPS velocities, was built by TDEFNODE software to simultaneously invert the fault elastic strain parameters and rigid motion parameters based on the grid research and simulated annealing methods. The long-term slip rates on the faults were further estimated by the differential motions between the neighboring blocks. The results show that the nearly NS dextral strike-slip faults, Naga Fault and Sagaing Fault, slip with the average rates of ~10.6 and ~16.6mm/a, which are consistent with the lateral extrusion in the Tibetan plateau. However, the Main Frontal Thrust shows a distinguished sinistral strike-slip feature(6~10mm/a), possibly caused by the NNE pushing from the Indian plate to the Eurasian plate. On the other hand, because the EHS is located in frontal area of the collision between Indian and Eurasian plate, most faults show thrusting feature. The most obvious one is the Mishimi Fault, slipping with the rate of 23.3mm/a, implying that the convergence rate of the Indo-European plates is largely absorbed by this fault. The moment accumulation rate in the EHS is higher than the average rate in the Tibetan plateau and the total moment accumulation is(1.15±0.03)×1022 N·m in the last 200a. About 59.7% and 21.6% of the moment accumulation rate concentrate on the Main Frontal Thrust and Mishimi Fault. Second, we selected the earthquake records occurring on the upper crust since 1800AD to analyze the moment release in the EHS based on the data from the International Seismological Centre, United States Geological Survey, and catalogue of historical strong earthquakes in China and some other previous studies. In addition, the Global Centroid Moment Tensor Project and linear regression method were adopted to estimate the relationship between body wave magnitude(mb), surface wave magnitude(MS), local magnitude(ML)and the moment(M0). Then we further estimated the total fault moment release in the EHS, (5.50±2.54)×1021N·m, which is significantly lower than the total moment accumulation. About 79.2% of the moment release occurs on the Mishimi Fault, this is because the 1950 MS8.6 Chayu earthquake is assumed to have ruptured on this fault. Finally, the present-day moment deficits on the faults in the EHS were calculated by the differences between the moment accumulation and release, which represent the possibility to produce earthquakes on the upper crust faults in the future. The largest moment deficit was found on the Main Frontal Thrust near Bhutan, which is able to rupture with MW8.1+. Similarly, earthquakes with MW7.5+ and MW7.3+ have the potentials to occur on the Naga Fault and the Jiali Fault near Tongmai. However, the future earthquake scales may be less than MW7.1 on the remaining faults. Moderate minor earthquakes are the main activity in the area near the Yarlung Zangbo Suture zone and the southern Sagaing Fault. Although the Chayu MS8.6 earthquake occurred near the Mishimi Fault and the eastern MFT, the earthquake risk on those two faults cannot be ignored. Meanwhile, no matter which fault produced the Chayu earthquake, its recurrence will likely be 660a to 1 030a.  相似文献   

13.
王永哲  陈石  陈鲲 《地震》2021,41(1):116-128
2020年3月20日, 处在北喜马拉雅断裂与申扎—定结断裂交会区的西藏定日发生MW5.7地震, 此次地震发震断层源模型的研究对于认识该地区的复杂地质构造具有重要意义。 本文利用升、 降轨Sentinel-1A星载SAR数据, 通过合成孔径雷达干涉测量(InSAR)处理获得了地震引起的地表位移场, 其中, 雷达视线方向(LOS)最大地表位移达到0.16 m。 基于均匀弹性半空间位错模型, 利用得到的地表形变数据, 通过非线性和线性反演确定了包含断层几何参数以及滑动分布的震源模型, 最后对发震断层的构造特点进行了分析。 结果表明, 发震断层是具有少量右旋走滑分量的浅部隐伏正断层, 断层走向为319°, 倾角为44°, 断层滑动主要集中在1~6 km深的范围内, 最大滑动量位于深度4 km处且达到0.8 m。 地震释放的地震矩为4.14×1017 N·m, 对应矩震级为MW5.7, 与地震波形反演结果一致。 通过分析, 我们认为此次定日地震的发震断层可能为申扎—定结主断裂南端“Y”字型的分支断裂, 该地区“Y”字型构造的存在可能是小震集中于此的主要原因。  相似文献   

14.
赵博  高原  马延路 《地球物理学报》2022,65(3):1006-1020
2021年5月21日云南省大理州漾濞县发生了Ms6.4地震,引起了社会的极大关注.本研究利用双差定位法对云南漾濞Ms6.4地震序列(2021年5月1824日)进行了重新定位,获得331个地震重新定位结果,主震震源位置为(99.869°E,25.689°N,8.8 km).利用远场Rayleigh面波振幅的频谱陷波相,通...  相似文献   

15.
2014年8月3日云南鲁甸(MW6.1,MS6.5)地震是一次规模不大、但灾害严重的走滑型地震事件.受走滑型地震辐射图型的影响,远震地震资料在特定方位上信噪比不高,给此次地震发震断层面的确定造成了一些干扰.本文概述了鲁甸地震发生后2.4小时发布的作为地震应急响应的破裂过程快速反演工作,以及随后对反演结果的修订工作.修订结果中,两个双力偶节面的反演都显示破裂方向朝地表和走向方向扩展.结合现有的烈度分布和余震精确定位结果,根据破裂方向和烈度与余震分布的优势方向的一致性,确定鲁甸地震是发生在走向162°,倾角86°的近乎垂直于地面的以左旋走滑为主的断层面上的一次破裂事件.根据破裂过程反演得到的震源时间函数,大部分地震矩在破裂开始后2~5 s内集中释放. 比较集中的地震矩释放过程可能是此次地震面波震级明显高于矩震级,且造成严重地震灾害的原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号