首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In sparsely cropped farming systems in semi-arid tropics, rainfall partitioning can be complex due to various interactions between vertical and horizontal water flows, both in the atmosphere and in the soil. Despite this, quantifying the seasonal rainfall partitioning is essential, in order to identify options for increased yields. Results are presented on water flow components, based on field measurements and water balance modelling, for three years (1994–96) in a farmer's field cultivated with pearl millet [Pennisetum glaucum (L.) Br.] in the Sahel (Niger). Water balance modelling was carried out for three common infiltration categories: runoff producing surfaces, surfaces receiving inflow of runon water from upstream zones, and a reference surface with zero runoff and runon. Runoff was calculated to 25%–30% of annual rainfall (which ranged from 488 to 596 mm), from crust observations, rainfall, soil wetness data, and infiltration estimates. Inflow of runon was estimated from field observations to 8%–18% of annual rainfall. The parameters in the functions for soil surface and canopy resistances were calibrated with field measurements of soil evaporation, stomatal conductance and leaf area. The model estimates of soil water contents, which were validated against neutron probe measurements, showed a reasonable agreement with observed data, with a root mean square error (RMSE) of approximately 0.02 m3 m−3 for 0–160 cm soil depth. Estimated productive water flow as plant transpiration was low, amounting to 4%–9% of the available water for the non-fertilised crop and 7%–24% for the fertilised crop. Soil evaporation accounted for 31%–50% of the available water, and showed a low variation for the observed range of leaf area (LAI <1 m2 m−2). Deep percolation was high, amounting to 200–330 mm for the non-crusted surfaces, which exceeded soil evaporation losses, for 1994–95 with relatively high annual rainfall (517–596 mm). Even a year with lower rainfall (488 mm) and a distinct dry spell during flowering (1996), resulted in an estimated deep percolation of 160 mm for the non-fertilised crop. The crop did not benefit from the additional inflow of runon water, which was partitioned between soil water storage and deep percolation. The only exception to this was the fertilised crop in 1996, where runon somewhat compensated for the limited rainfall and the higher water demand as a result of a larger leaf area than the non-fertilised crop. The effects of rainfall erraticness, resulting in episodic droughts, explain why a crop that uses such a small proportion of the available water, in an environment with substantial deep percolation, still suffers from water scarcity. Application of small levels of phosphorus and nitrogen roughly doubled yields, from 380 to 620 kg ha−1, and plant transpiration, from 33 to 78 mm. Evapotranspirational water use efficiency (WUEET) was low, 6500–8300 m3 ton−1 grain for non-fertilised crop, which is an effect of the low on-farm yields and high non-productive water losses. The estimated seasonal rainfall partitioning indicates the possibility of quantifying vertical water flows in on-farm environments in the Sahel, despite the presence of surface overland flow.  相似文献   

2.
In 1995–1998, Han 11 km terrestrial surge of Kuannersuit Glacier, an outlet glacier of the largest ice cap on Disko Island, West Greenland, affected the catchment dramatically. In order to estimate solute fluxes and provenances, bulk meltwaters were sampled at the main subglacial outlet during the initial part of the quiescent phase. The hydrochemistry is significantly influenced by a subglacial basaltic weathering regime with absence of carbonate minerals. The results show that marine and aerosol derived solutes have minimal contribution to the total ion content, whereas sequestration of atmospheric CO2 associated with carbonation of Ca-rich feldspar and reactive volcanic glass is more dominant than previously reported from glacierized catchments. Application of a sampling strategy dividing water samples into four groups to determine the content of dissolved HCO3 and CO32− shows that the cationic equivalent weathering rate range is 683–860 Σmeq+ m−2 a−1 and solute flux ranges between 76 and 98 t km−2 a−1. The crustal denudation rate is estimated to 26 t km−2 a−1, and the transient CO2 drawdown amounts to 8500–13700 kg C km−2 a−1.  相似文献   

3.
Four distinct approaches, that vary markedly in the spatial and temporal resolution of their measurement and process-level outputs, are used to investigate the daily and seasonal water vapour exchange in a 70-year-old Belgian Scots pine forest. Transpiration, canopy interception, soil evaporation and evapotranspiration are simulated, using a stand-level process model (SECRETS) and a soil water balance model (WAVE). Simulated transpiration was compared with up-scaled sap flow measurements and simulated evapotranspiration to eddy covariance measurements.

Reasonable agreement in the temporal trends and in the annual water balance between the two models was observed, however daily and weekly predictions often diverged. Most notably, WAVE estimated very low, to no transpiration during late autumn, winter and early spring when incident radiation fell below 50 W m−2 while SECRETS simulated low (0.1–0.4 mm day−1) fluxes during the same period. Both models exhibited similar daily trends in simulated transpiration when compared with sap flow estimates, although simulations from SECRETS were more closely aligned. In contrast, WAVE over-estimated transpiration during periods of no rainfall and under-estimated transpiration during rainfall. Yearly, total evapotranspiration simulated by the models were similar, i.e. 658 mm (1997) and 632 mm (1998) for WAVE and 567 mm (1997) and 619 mm (1998) for SECRETS.

Maximum weekly-average evapotranspiration for WAVE exceeded 5 mm day−1, while SECRETS never exceeded 4 mm day−1. Both models, in general, simulated higher evapotranspiration than that measured with the eddy covariance technique. An impact of the soil water content in the direct relationship between the models and the eddy covariance measurements was found.

The results suggest that: (1) different model formulations can reproduce similar results depending on the scale at which outputs are resolved, (2) SECRETS estimates of transpiration were well correlated with the empirical measurements, and (3) neither model fitted favourably to the eddy covariance technique.  相似文献   


4.
In the study of soil erosion, specifically on detachment of soil particles by raindrop impact, kinetic energy is a commonly suggested indicator of the raindrop's ability to detach soil particles from the soil mass. Since direct measurement of kinetic energy requires sophisticated and costly instruments, the alternative approach is to estimate it from rainfall intensity. The present study aims at establishing a relationship between rainfall intensity and kinetic energy for rainfalls in Central Cebu, Philippines as a preface of a wider regional investigation.

Drop size distributions of rainfalls were measured using the disdrometer RD-80. There are two forms of kinetic energy considered here. One is kinetic energy per unit area per unit time (KER, J m−2 h−1) and the other is kinetic energy per unit area per unit depth (KE, J m−2 mm−1). Relationships between kinetic energy per unit area per unit time (KER) and rainfall intensity (I) were obtained using linear and power relations. The exponential model and the logarithmic model were fitted to the KE–I data to obtain corresponding relationships between kinetic energy per unit area per unit depth of rainfall (KE) and rainfall intensity (I). The equation obtained from the exponential model produced smaller standard error of estimates than the logarithmic model.  相似文献   


5.
The effects of salinity, temperature, and light conditions on the reproduction and development of harpacticoid copepod, Nitocra affinis f. californica under controlled laboratory conditions were determined. Seven different salinity levels (5, 10, 15, 20, 25, 30, 35 ppt), four temperatures (20, 25, 30, 35 °C), three different light intensities (25, 56, 130 μmol m−2 s−1) and photoperiods (24 h:0 h, 1 h:23 h, 12 h:12 h LD cycle) were employed in this study. The highest (p < 0.05) overall reproduction and fastest development time were achieved by copepods reared under 30–35 ppt salinity. The optimum temperature required for the maximum reproduction was 30 °C while under 30 °C and 35 °C the copepod development time was shortest (p < 0.05) compared to other temperature levels. The overall reproduction was highest (p < 0.05) and development rate of N. affinis was shortest (p < 0.05) under lowest light intensity (25 μmol m−2 s−1). Continuous light (24 h:0 h LD) inhibited the egg production while, continuous darkness (1 h:23 h LD) and 12 h:12 h LD significantly favoured the overall reproductive activity of the female. Photoperiods 1 h:23 h and 12 h:12 h LD yielded highest total (p < 0.05) offspring female−1 coupled with highest (p < 0.05) survival percentage. This study illustrated that although N. affinis can tolerate wide range of environmental conditions, prolonged exposure to subnormal environments affect its reproduction and development. This study showed that this species can be mass cultured for commercial purposes and has a potential to be used for toxicity studies due to its high reproductive performance fast development and a wide range of tolerance to environmental conditions.  相似文献   

6.
Measurements of transpiration from individual trees of Eucalyptus from plantations at four different sites in Karnataka, Southern India, are presented. These show large (as much as tenfold) differences in the transpiration between premonsoon and postmonsoon periods, a reflection of the effects of soil-moisture stress in the premonsoon periods. For trees with diameters at breast height (DBH) less than 10 cm the transpiration rate of individual trees is proportional to the square of the DBH. For trees which are not experiencing soil-water stress the daily transpiration rate of individual trees, q, is well represented by the relation: q = (6.6 ± 0.3)g (m3 day−1 where g (m2) is the tree basal area. On a unit ground area basis the transpiration rate, expressed as a depth per day is given by the relation: Et = (0.66 ± 0.03)G (mm day−1 where g(m2ha−1) is the total basal area per hectare. For all the sites studied, although there is evidence for the ‘mining’ of soil water as roots penetrate deeper depths in the soil each year, there is no evidence for direct abstraction from the water table.  相似文献   

7.
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation.

Aquifers with an average hydraulic conductivity of 0.55 m day−1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day−1). These aquifers are separated by an aquitard (0.065 m day−1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method.

Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4–50 m2 day−1) and is capable of producing from less than 5 to over 230 kl day−1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived.

The overlying aquitard has a low transmissivity (< 1 m2 day−1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m2 day−1 to over 10 m2 day−1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl−1 to greater than 250000 mgl−1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.  相似文献   


8.
This study aimed to determine whether the δ13C levels in the foliage and twigs of four Eucalyptus grandis clones were related to their water use efficiency (WUE). This relationship has previously been demonstrated in a number of herbaceous species but not in mature trees. The study involved accurate measurements of tree trunk growth and water use over a period of 4 months, with subsequent isotopic analysis of mature foliage from the north and south side of the canopy, and young leaves from the top of the canopy.

The water use efficiencies were found to vary from 5.97 × 10−3 to 12.3 × 10−3 m3 m−3. Significant differences were observed between clonal-mean water use efficiencies averaged over six sampling periods. The average δ13C of the mature and young foliage was found to be significantly correlated with WUE. However, the correlation was weak, suggesting that the relationship between δ13C and WUE is more complex in trees than suggested in the literature on crop plants. It is suggested that differences between sample trees in carbon allocation and leaf-to-air vapour pressure deficits may account for the poor correlation between δ13C and WUE in the four E. grandis clones studied.  相似文献   


9.
This paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km2) and Herefordshire Wye (4017 km2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha−1 yr−1; DP, 2.57 vs 1.26 kg ha−1 yr−1; PP, 2.20 vs 0.56 kg ha−1 yr−1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002–2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.  相似文献   

10.
PCBs, p,p′-DDT, p,p′-DDE and lindane (γ-hexachlorocyclohexane) were monitored in the lower atmosphere of Ross Island, in Antarctica for 2 yr. Geometrical means were 15.2 pg m−3 for PCBs, 2.0 pg m−3 for p,p′-DDT, 1.0 pg m−3 for p,p′-DDE and 25.8 pg m−3 for lindane. Atmospheric levels of lindane were positively correlated with temperature, and a significant difference was found between spring-summer and summer-winter concentrations. No season related differences were found for the other chlorinated hydrocarbons, possibly owing to their lower vapour pressure and the cold climate. Periods with increased atmospheric levels of PCBs and DDT compounds were recorded. Lindane, p,p′-DDE and PCBs were present in fish and zooplankton sampled close to Ross Island. Pollutant levels in the zooplankton (on an extractable fat basis) were highest during the Antarctic spring and autumn and were inversely correlated to their fat content.  相似文献   

11.
A study of the interaction between groundwater and surface water was undertaken within a small agricultural watershed in southern Ontario, Canada. Groundwater contributions to streamflow were measured along a section of stream during baseflow conditions and during rainfall events. Four techniques were used to estimate the contribution of groundwater to the stream along a 450 m reach (three during baseflow and one during stormflow conditions). Under baseflow conditions, streamflow measurements using the velocity–area technique indicated that the net groundwater flux to the stream during the summer months was 10 ml s−1 m−1. Hydrometric measurements (i.e. hydraulic gradient and hydraulic conductivity) taken using mini-piezometers installed in the sediments beneath the stream resulted in net groundwater flux estimates that were four to five times lower. Seepage meters failed to provide any measurements of water flux into or out of the stream. Therefore, based on these results, the velocity–area technique gives the best estimate of groundwater discharge. Hydrograph separations were conducted using isotopic ratios and electrical conductivity on two large rainfall events with different antecedent moisture conditions in the catchment. Both events showed that pre-event water (generally considered groundwater) dominated streamflow and tile drain flow with 64%–80% of the total discharge contributed by pre-event water. High water table conditions within the catchment resulted in greater stream discharge and a greater contribution of event water in the streamflow than that observed under low water table conditions for similar intensity storm events. The results also showed that differences in riparian zone width, vegetation and surface saturation conditions between the upper and lower catchment can influence the relative magnitude of streamflow response from the two catchment areas.  相似文献   

12.
Xiao-Yan Li   《Journal of Hydrology》2002,260(1-4):151-160
Information regarding dew deposition on the stone-covered surface is scarce. The effects of gravel and sand mulches on dew condensation were studied during the late summer and fall of 1999 in the semiarid loess region of China. The results indicated that there were significant difference in daily dew amount between gravel mulch, sand mulch and dry loess soil (control). The average dew amount for gravel mulch was 0.071 mm d−1 with extreme 0.022 and 0.20 mm d−1. The average values for sand mulch and dry loess soil was 0.12 and 0.15 mm d−1, respectively. The minimum dew amount was 0.048 mm d−1 for sand mulch and 0.071 mm d−1 for dry loess soil, and the maximum dew amount was approximate 0.25 mm d−1 for both treatments. The results suggest that surface stone mulch can reduce dew deposition as compared to sand and dry loess soil.  相似文献   

13.
REE diffusion in calcite   总被引:6,自引:0,他引:6  
Chemical diffusion of four rare-earth elements (La, Nd, Dy and Yb) has been measured in natural calcite under anhydrous conditions, using rare-earth carbonate powders as the source of diffusants. Experiments were run in sealed silica capsules along with finely ground calcite to ensure stability of the single-crystal samples during diffusion anneals. Rutherford backscattering spectroscopy (RBS) was used to measure diffusion profiles. The following Arrhenius relations were obtained over the temperature range 600–850°C: DLa =2.6×10−14 exp(−147±14 kJ mol−1/RT) m2 s−1, DNd =2.4×10−14 exp(−150±13 kJ mol−1/RT) m2 s−1, DDy =2.9×10−14 exp(−145±25 kJ mol−1/RT) m2 s−1, DYb =3.9×10−12 exp(−186±23 kJ mol−1/RT) m2 s−1. In contrast to previous findings for refractory silicates (e.g. zircon), differences in transport rates among the REE are not pronounced over the range of temperature conditions investigated in this study. Diffusion of the REE is significantly slower than diffusion of the divalent cations Sr and Pb and slower than transport of Ca and C at temperatures above 650°C. Fine-scale zoning and isotopic and REE chemical signatures may be retained in calcites under many conditions if diffusion is the dominant process affecting alteration.  相似文献   

14.
Analytical procedures in the determination of iodine-129 (half-life: 1.6×107 y) have been studied using accelerator mass spectrometry (AMS), with special references to the separation procedures of iodine from soil samples for the AMS measurement. Iodine was successfully volatilized from soil samples by pyrohydrolysis at 1000 °C and collected in a trap solution. Iodine was purified from the matrix by solvent extraction. Finally, it was precipitated as silver iodide to make a target for AMS. In order to obtain information on the 129I/127I ratio in a chemical blank (or iodine carrier), we have determined the ratios in several iodine reagents and found that the ratios fell in a narrow range around 1.7×10−13. The detection limit for soil sample (1 g material) by the present method was about 0.01 mBq/kg or 4×10−11 as the ratio of stable iodine (129I/127I ratio), i.e. these values were much better than that by neutron activation analysis (NAA) used in our previous studies. We have applied this method in the analysis of soil samples collected from different places in Japan. We could successfully determine 129I in soil samples with low 129I concentrations, which could not be detected by NAA. Sample size necessary for the soil analysis by AMS was only about 0.5 g or less, whereas about 100 g of the sample were required for NAA [Muramatsu, Y., Ohmomo, Y., 1986. Iodine-129 and iodine-127 in environmental samples collected from Tokaimura/ Ibaraki, Japan. Sci. Total Environ. 48, 33-43]. Using this method, new data were obtained for the 129I levels in 20 soil samples collected from background areas far from nuclear facilities, and the ranges were 1.4×10−5−4.5×10−3 Bq/kg as 129I concentrations and 3.9×10−11−2.2×10−8 as 129I/127I ratios. These values are useful in understanding the 129I levels in Japanese environments. Higher 129I concentrations were observed in forest soils than those in field and rice paddy soils should be related to the interception effect of atmospheric 129I due to tree canopies. Relatively high 129I/127I ratios found in rice paddy soils could be explained by their low stable iodine concentrations which were caused by the desorption of stable iodine from the rice paddies during the cultivation.  相似文献   

15.
The activity ratios of Pu and radiocesium isotopes have been used to delineate the major sources (such as global and close-in (debris) fallout, nuclear fuel reprocessing and fabrication plant effluents) in the environment. We have measured 238Pu, 239,240Pu, 137Cs, and excess 210Pb concentrations in 107 surficial sediments as well as in 5 sediment cores collected in the summer months of 1993 and 1994 from the Ob and Yenisey Rivers (Russia) and the Kara sea. A comparison of the sediment core inventories of 239,240Pu and 137Cs, along with the 238Pu/239,240Pu activity ratios, with those expected from global fallout allows us to estimate the relative amounts, if any, of reactor-derived 238Pu and 239,240Pu from the dumped reactor sites in the study area.

In surficial sediment samples collected in 1993 and 1994, the 239,240Pu concentrations varied between 4.2 and 856 mBq kg−1, with a mean of 239 mBq kg−1. In samples with a measurable 238Pu, the 238Pu/239,240Pu activity ratios varied between 0.010 and 0.069, with an average value of 0.035 ± 0.014. This range can be compared to the average 238Pu/239,240Pu activity ratio of 0.030 for the year 1993 from nuclear weapons testing and SNAP fallout obtained from soil studies, indicating very little (≤ 5%) additional sources of 238Pu to the sediments in the study area. The inventories of Pu in the 5 sediment cores from the study area varied between 2.67 ± 0.67 and 24.5 ± 2.2 Bq m−2 with a mean value of 8.83 Bq m−2. The 137Cs concentrations in the upper 3 cm of the sediments varied between below detection limit to 71.4 Bq kg−1, with a mean of 14.9 Bq kg−1. The 137Cs inventories in the 5 sediment cores varied between 156.7 ± 28.3 and 1600 ± 153.3 Bq m−2, with a mean value of 583.3 Bq m−2. The mean ratio of inventories of Pu to that of 137Cs, 0.015, is comparable to the values in other places in the Arctic region. There is a significant correlation between total organic carbon and concentrations of 137Cs, 239,240Pu and 210Pb, suggesting that organic matter-enriched fine particles are a likely carrier phase for these nuclides. The ratio of 137Cs/239,240Pu also suggests that most of these nuclides are derived from global fallout.  相似文献   


16.
Alang–Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10 × 106 ± 7.82 × 105 LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m2 compared to Alang 10.19 kg/m2. The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m2; whereas, non-combustible waste is 1.933 kg/m2. There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).  相似文献   

17.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

18.
We evaluate the reliability of the joint use of Ground Penetrating Radar (GPR) and Time Domain Reflectometry (TDR) to map dry snow depth, layering, and density where the snowpack thickness is highly irregular and the use of classical survey methods (i.e., hand probes and snow sampling) is unsustainable.We choose a test site characterised by irregular ground morphology, slope, and intense wind action (about 3000 m a.s.l., Western Alps, northern Italy) in dry snow conditions and with a snow-depth ranging from 0.3 m to 3 m over a few tens of metres over the course of a season.The combined use of TDR and high-frequency GPR (at a nominal frequency of 900 MHz) allows for rapid high-resolution imaging of the snowpack. While the GPR data show the interface between the snowpack and the ground, the snow layering, and the presence of snow crusts, the TDR survey allows the local calibration of wave speed based on GPR measurements and the estimation of layer densities. From January to April, there was a slight increase in the average wave speed from 0.22 to 0.24 m/ns from the accumulation zone to the eroded zone. The values are consistent with density values in the range of 350–450 kg/m3, with peaks of 600 kg/m3, as gravimetrically measured from samples from snow pits at different times. The conversion of the electromagnetic wave speed into density agrees with the core samples, with an estimated uncertainty of about 10%.  相似文献   

19.
A nomogram is developed to show that pH, redox potentials (EhNHE) and measures of dissolved sulfides (H2S + HS + S2−)(total free S2−) can be used to classify organic enrichment impacts in marine sediments. The biogeochemical cycle of sulfur in marine sediments is described to show that changes in macrobenthic infauna community structure associated with high levels of organic matter supply result from stress due to oxygen deficiency (hypoxia and anoxia) and toxic effects of S2−. The changes reflect enhancement of microbial sulfate reduction under conditions of high organic matter sedimentation and the progressive formation of hypoxic–anoxic conditions measured by decreased EhNHE and increased concentrations of S2−. The nomogram provides a basis for classification of the oxic status of marine sediments based on changes in inter-related biological and biogeochemical variables along an organic enrichment gradient.  相似文献   

20.
Increased stormflow in the Quebrada Estero watershed (2.5 km2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m3 s−1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号