首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
南海中北部陆缘横波速度结构及其构造意义   总被引:6,自引:2,他引:4       下载免费PDF全文
纵横波联合勘探可以得到更多关于岩石圈层岩性、物性等介质属性方面的信息,有效提高地壳物质组成的约束性.在纵波速度结构模型的基础上,通过射线追踪和走时拟合对OBS2006-3地震剖面径向分量的转换震相进行了横波速度结构模拟.结果表明:沉积层1、沉积层2的横波速度分别为0.7~0.9 km/s和1.6~1.7 km/s,波速...  相似文献   

2.
南海西南次海盆与南沙地块的OBS探测和地壳结构   总被引:18,自引:9,他引:9       下载免费PDF全文
跨越南海西南次海盆南部陆缘和南沙地块中部的OBS973-1测线是南海南部首次采集的海底地震仪(OBS)广角反射与折射深地震测线,本文通过震相分析和走时正演拟合,获得了沿测线的二维纵波速度结构模型.模拟结果显示表层沉积物速度2.5~4.5 km/s,厚度1000~3000m,局部基底面起伏较大.结晶基底的速度从顶部的4....  相似文献   

3.
东海陆坡及相邻槽底天然气水合物的稳定域分析   总被引:18,自引:2,他引:18       下载免费PDF全文
利用实测的海底温度和海底热流资料对东海陆坡和冲绳海槽中轴以西的槽底地区的海底温度场和热流场进行了分析. 利用地震声纳浮标和OBS(Ocean Bottom Seismometer)资料将本研究区的地层划分为6层,自上而下地层的速度分别为1.8(1.8~2.2) km/s、2.2(2.0~2.5)km/s、2.8(2.7~3.2)km/s、3.4~3.6km/s、4.2(4.1~4.7)km/s、5.1km/s. 上部的1.8~2.2 km/s的速度层相当于第四纪的地层,2.8 km/s的速度层相当于上新世上部的地层,3.4~4.2 km/s的速度层相当于上新世下部的地层. 天然气水合物稳定域覆盖的面积从水深约500m的陆坡下缘到冲绳海槽的中轴部分约70000km2,相当于整个东海海域面积的十分之一. 稳定带的厚度从400m(研究区中部)到1100m(研究区北部和南部)不等. 适合水合物稳定赋存的地层主要是第四纪(1.8km/s、2.2km/s)和上新世的地层(2.8km/s). 根据热流、构造活动性和稳定带的厚度分析,研究区北部和南部更适合天然气水合物的稳定赋存.  相似文献   

4.
南海海底地震仪异常数据的分析和处理   总被引:4,自引:2,他引:2       下载免费PDF全文
海底地震仪(Ocean Bottom Seismometer,OBS)数据处理至关重要,是获取深部地壳结构的基础与前提.2006年实施OBS2006-2测线时,有2台OBS(OBS03,OBS06)数据出现异常,无法使用.由于海上航次花费巨大,采集到的数据弥足珍贵.本文采用数据格式检查、邻近台站对比分析、重采样等方法,成功地对这2台OBS数据进行了解编处理,得到了这两个台站的综合地震记录剖面;利用上述方法对2011年实施的OBS973-3测线中的异常台站OBS03进行了分析处理,同样得到了OBS03台站的综合地震剖面;通过查看两次海上实验班报发现,OBS2006-2测线之OBS06与OBS973-3测线之OBS03内部Sedis编号相同,为同一台记录仪器,再一次验证上述处理方法正确可行;然后对OBS2006-2测线2个台站进行震相识别与走时拾取后,利用前人纵波速度模型开展了射线追踪与走时模拟.此次对异常OBS数据的重新处理工作,不仅为OBS探测提供了宝贵的数据处理经验,而且将提高OBS2006-2测线地壳结构的可靠性和约束性,具有重要的研究意义.  相似文献   

5.
穿越东沙隆起和潮汕坳陷的OBS广角地震剖面   总被引:15,自引:9,他引:6       下载免费PDF全文
为了探明南海中北部陆缘深部地壳结构,使用2D射线追踪正演和反演方法,拟合了一条南海中北部陆缘的OBS广角地震剖面(OBS2006-3).该剖面穿越东沙隆起和潮汕坳陷,长319 km,NNW-SSE走向,共投放海底地震仪14台.速度结构模型表明:潮汕坳陷存在巨厚的中生代沉积,最大厚度达到8 km,速度从顶部的4.4 km...  相似文献   

6.
中国东海及邻近海域一条剖面的地壳速度结构研究   总被引:11,自引:3,他引:11  
1982年以来,中国科学院海洋研究所在东海海域进行了二十多个站位的遥测浮标折射地震测量,1991年又在东海陆架区进行了OBS测量,本文在我国东海域选择了横穿东海陆架,冲绳海槽,琉球岛弧,琉球海沟和菲律宾海盆的一条剖面,利用上述折射地震资料及其它该剖面附近的折射地震资料,对该剖面的地壳速度结构进行了研究,并进行了速度年代对比。研究表明,剖面的速度结构在纵向上和横向上都表现出明显的差异,横向上可分为三隆三盆,纵向上大致可划分为1.8-2.2km/s,2.4-2.8km/s,3.0-3.6km/s,4.2-5.1km/s和5.75-6.0km/s的速度层,从地壳的速度结构否则 本海区至少有如下的沉积旋回:降冲 槽的中抽外,上新世纪至第四纪本海区沉积环境稳定,而冲第槽中轴可能一直处于构造活跃的状态;始新世为本区沉积的全盛渐新世该区域处于抬升的时期,钓鱼岛隆起区、琉球岛弧隆起区在此期的沉积被剥蚀殆,东海陆架和冲 槽此时斯 沉积也受到相当程度的剥蚀,东海陆架盆地和冲绳槽此时期的沉积也受到相当沉的剥蚀。,东海陆架盆地和冲槽盆地的出现可能在5.75-6.0km/s的速度层沉积之后,菲律宾海盆为典型的大洋地壳结构。  相似文献   

7.
滇西地区地壳结构的爆破地震研究   总被引:66,自引:15,他引:66       下载免费PDF全文
本文描述我国滇西地区洱源-江川和遮放-宾川二条剖面的地壳结构爆破地震的研究结果。 资料分析解释的结果说明,该地区的地壳内存在四个界面:Pg、P20、P30与P40面。Pg面为结晶基底面,深度在0.3-3.5km之间,界面速度约5.90km/s。P02面为地壳上部反射面,深度在12至24km间,其界面速度约6.30-6.50km/s。该界面的下方,在大部分地段是一厚梯度层至莫霍界面。在30-35km的深处,局部地区存在弱反射界面P30。而莫霍面(即P40面)的深度在37-46km。遮放-宾川剖面的地壳平均速度约6.40km/s,莫霍界面速度为8.06km/s。但洱源-江川剖面的这两种参数分别为6.19km/s与7.75km/s,其下侧50km的深处还存在P50反射面。 遮放-宾川剖面上的怒江断裂在P40及P20面上有2.5km的深度跳跃。澜沧江断裂经过的地方,P40震相追踪中断,波形畸变。这类现象在洱源-江川剖面的几个地方也有明显反应,在元谋-绿汁江断裂处莫霍面的深度跳跃达3km,断裂还使江川炮的P40震相追踪中断。 在洱源-江川剖面的中段,发现了上地幔低速度异常带,速度值为7.75km/s。  相似文献   

8.
基于南海北部大陆边缘珠江口—琼东南盆地深水区实施的14条近垂直深反射地震探测叠加速度谱,利用Dix公式将叠加速度剖面转换为地壳层速度剖面,并利用时深转换方法构建了深度域地壳层速度模型,综合各地壳速度剖面分析了南海北部大陆边缘珠江口与琼东南盆地不同深度层次的P波速度变化趋势以及地壳几何分层特征.结果表明,琼东南盆地区可分为4~8 km沉积层(VP为1.7~4.7 km/s)、4~10 km厚的上地壳层(VP为5.2~6.3 km/s)、5 km〗左右的下地壳层(VP为6.4~7.0 km/s)以及2~6 km厚的高速下地壳底层(VP>7.0 km/s).VP>7.0 km/s下地壳高速层的存在被认为是岩石圈伸展、下地壳底部底辟构造或者是残存的原始华夏下地壳基性层的地震学指示;综合研究区地球物理探测成果构建了跨越华南大陆与南海北部陆坡区剖面莫霍和岩石圈底界图像,揭示出岩石圈上地幔在华南大陆与南海北部大陆边缘的减薄特征.  相似文献   

9.
OBS2013测线沿NNW-SSE方向跨越渤中坳陷和胶东隆起次级构造以及张家口-蓬莱和郯庐两条深大断裂带.对测线上13个站位折合剖面进行震相分析,识别出丰富的Ps、Pg、PcP、Pn和PmP震相.通过射线追踪和走时拟合,建立了二维P波速度结构模型.模型将渤海深部速度结构分为6层,最上部两层为新生界,速度由1.8~2.0km/s变化为4.4~4.7km/s,埋深为0.5~7.2km,并向胶东隆起方向逐渐尖灭.向下依次分为上地壳下部、中地壳和下部地壳,地壳速度由5.6~5.9km/s变化为7.0km/s,其中上地壳底界面埋深11.1~12.9km,中地壳底界面埋深18.0~18.9km,莫霍面在渤中凹陷处埋深最浅为25.5km,向胶东隆起方向逐渐增大到30km.莫霍面之下上地幔顶部速度为8.0~8.1km/s.渤海下部地壳厚度变化接近5km,从下地壳到上地幔顶部均无明显的大尺度横向速度变化,岩浆底侵不发育.结合已有研究成果,推测渤海东南部与华北克拉通中部相比,下地壳厚度减薄9~13.4km,地壳减薄非常有限,具有典型陆壳特征.  相似文献   

10.
广角地震测线(OBS973-2)位于南海南部陆缘,其地壳深部构造是研究南海共轭扩张及形成演化的直接证据之一.本文采用2D射线追踪技术,结合与之重合的多道地震测线(NH973-2)时深转换结果,对OBS973-2测线重新进行了正、反演研究,得到了礼乐滩及邻近海区的精细地壳结构.与前人结果相比,本文基于正反演速度模型,把测线分为陆壳区(0~200 km)、洋陆过渡区(200~280 km)和洋盆区(280~370 km).地壳结构在不同区域差异明显,陆壳区沉积层厚度横向差异大,且速度横向不均匀,地壳整体厚度大(约20 km),有横向速度差;洋陆过渡区速度和厚度横向均匀,地壳减薄(约8 km);洋壳区地壳厚度减薄至6 km.与以往研究相比,新的认识集中在两个方面,(1)在方法上,综合广角地震和多道地震数据,借助正演和反演方法,能够得到更多更可靠的地壳结构信息.(2)在地壳结构上,结合广角地震与多道地震,得到洋陆过渡区莫霍面向海减薄的形态及其埋深(约12~18 km,海平面为0 km);进一步验证礼乐滩区域在洋陆过渡区没有明显的高速层,为非火山型陆缘,其共轭扩张点为中沙地块;陆壳区上地壳强烈的拉张作用在速度模型表现出横向速度异常和低速区,在多道地震剖面上表现为大量10~20 km的正断层.  相似文献   

11.
—This paper presents a crustal model derived from an Ocean Bottom Seismograph (OBS) study along the northern Vøring margin off Norway. The profile was acquired to map the crustal structure in the northernmost part of the Vøring Basin, and to link crustal models of the Lofoten and central Vøring Basin obtained by previous OBS studies. The Vøring margin, as well as the Lofoten margin to the north, was created by continental breakup between Norway and Greenland in late Paleocene-early Eocene. The rifting and continental breakup process were accompanied by intense extrusive and intrusive magmatic activities. The OBS data provide the whole crustal structure along the northern Vøring margin, in the area where the deep crustal structure cannot be resolved by conventional multichannel reflection data due to sill intrusions in the sedimentary sequence. The shallow part of the crustal model is characterized by up to 10 km thick sediments, a sequence of flood basalts and sill intrusions. The P-wave velocities in the flood basalts and sill intrusions are estimated to 5.0 km/s and 4.7–5.8 km/s, respectively. The model indicates an abrupt thickening of the upper crystalline crust from approx.3 km in the NE, to about 10 km towards the SE, with velocities of 6.0–6.2 km/s. The lower crustal velocities are not well resolved due to lack of clear refraction arrivals from the lower crust. However, the observed amplitude versus offsets are best explained by a model with a change in lower crustal velocities from 6.8 to 7.2 km/s beneath the Bivrost lineament. The modelling infers the presence of a lower crustal reflector beneath the lineament, which represents the landward continuation of the Bivrost lineament. Reflection arrivals from the Moho reveal a Moho depth of 23 km in the middle of the profile and 18– 20 km in the northeastern part of the profile. A 370 km long crustal section from the central part of the Vøring Basin to the Lofoten margin, obtained by the results of this study and previous OBS studies, shows a simple thinned continental crust on the Lofoten margin, and a high velocity lower crust underlying an upper crust of varying thickness in the Vøring Basin. The transition between these structures is situated beneath the Bivrost lineament in the lower crust, and beneath the basement high about 40 km south of the lineament in the upper crust.  相似文献   

12.
华北克拉通北缘—西伯利亚板块南缘(张家口—中蒙边界)的深地震测深剖面长600 km,跨越华北板块、内蒙造山带和西伯利亚板块.沿测线采用8个1.5t的爆炸震源激发地震波,使用300套数字地震仪接收,取得了高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳内的反射波(P3)、中地壳底面的反射波(P4)、下地壳内的反射波(P5,仅在镶黄旗—苏尼特右旗下方出现)和莫霍面的反射波(Pm)等6个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在华北板块与内蒙造山带之间,内蒙造山带与西伯利亚板块之间,上地壳中存在明显的高速度局部变化,在地表发育大量的古生代花岗岩体、超基性岩体.(2)在中下地壳华北板块南缘的地震波速度大,为6.3~6.7 km/s,西伯利亚板块北缘的速度小,为6.1~6.7 km/s,且界面比较平缓.原因是在内蒙造山带内地壳的缩短和隆升造山引起了中下地壳界面的剧烈起伏,不同海陆块的拼合和物质交换导致了不同区域速度的不均匀性.(3)莫霍面在赤峰断裂带(F2)以南和索伦敖包—阿鲁科尔沁旗断裂带(F4)以北较为平缓,平均深度为40~42 km.在F2—F4之间呈双莫霍面,莫霍面1明显上隆,深度为33.5 km,层速度为6.6~6.7 km/s.莫霍面2明显下凹,在西拉木伦河断裂带(F3)下方,最深达到47 km,速度达到最大为6.8~6.9 km/s,这可能是由壳幔物质混合引起的.依据莫霍面的特点,本文认为双莫霍面以南为华北板块北缘,以北为西伯利亚板块南缘,拼合位置在赤峰断裂带(F2)与索伦敖包—阿鲁科尔沁旗断裂带(F4)之间的区域.  相似文献   

13.
阿尔泰-阿尔金地学断面地壳结构   总被引:15,自引:7,他引:8       下载免费PDF全文
根据阿尔泰—阿尔金地学断面的地震纵、横波资料,建立了地壳速度及泊松比结构. 测区的地壳具有明显的三分结构特征,其纵波速度自上而下依次为6.0~6.3km/s、6.3~6.6km/s及6.9~7.0km/s;阿尔泰南缘的地壳最厚,为56km,准噶尔盆地的地壳最薄,为46km,大部分地区的地壳厚度为50km 左右. 准噶尔盆地与天山之间上地幔顶部的纵波速度为7.7~7.8km/s ;阿尔泰南缘及塔里木盆地上地幔顶部的纵波速度较高,为7.9~8.0km/s. 测线南部,包括东天山及塔里木东缘,自地表至30km深处的地壳纵波速度低,泊松比为0.25,表明上地壳主要为石英及花岗质成分;而测线北部(包括阿尔泰及准噶尔盆地)的中、上地壳则呈现较高的泊松比(0.26~0.27),可能为基性地壳的体现. 厚15~30km的下地壳纵波速度(6.9~7.0km/s)较高,泊松比为0.26~0.28,可能以镁铁质的麻粒岩成分为主. 位于天山及其南侧地壳中部的低速层(VP=5.9km/s, σ=0.25)则可能为晚古生代的构造热事件中的花岗质侵入岩.  相似文献   

14.
六盘山断裂带及其邻区地壳结构   总被引:4,自引:1,他引:3       下载免费PDF全文
新生代期间,中国大陆西部受印度一欧亚板块碰撞和青藏高原隆升影响,以地壳缩短、增厚、陆内造山和强烈地震活动等为主要特征.在青藏高原东北边缘,高原物质侧向移动被鄂尔多斯地块所阻,在六盘山地区发育了一系列左旋斜冲断裂.断裂带周缘构造变形强烈,地震活动频繁,是研究青藏高原横向扩展控制大陆内部弥散变形的理想场所.本文对穿越青藏高原东北缘一六盘山断裂带一鄂尔多斯地块的宽角反射与折射地震资料使用层析成像和射线反演算法进行成像,获得了研究区地壳速度结构模型,其结果反映出六盘山断裂带两侧地壳结构、构造特征差异显著:1)上地壳层析成像结果显示鄂尔多斯盆地一侧地壳上部速度较低,等值线呈近水平状,具有典型的沉积盆地特征,而青藏高原东北缘一侧上地壳速度相对较高,横向变化剧烈,呈褶皱状,二者的分界为海原一六盘山逆冲走滑断裂;2)全地壳射线反演结果显示鄂尔多斯地块地壳速度梯度大,下地壳底部速度高由铁镁质物质组成,具有典型稳定古老克拉通的特征,青藏高原东北缘地壳速度总体较低,主要由长英质及长英-铁镁质过渡物质组成,具有典型造山带的特征,而六盘山断裂带下方地壳速度结构复杂,层面呈拱形,部分层出现速度逆转,为两个构造单元的接触过渡带;3)青藏高原东北缘一侧地壳厚度~50 km,鄂尔多斯地块地壳厚度~42 km,六盘山断裂带下方莫霍面发生叠置,揭示出青藏高原东北缘、鄂尔多斯地壳在六盘山下汇聚,较薄且刚性的鄂尔多斯地壳挤入较厚且塑性的青藏高原东北缘地壳中的构造模式.  相似文献   

15.
利用南海地区28个陆地地震台站和2个布设于太平岛和东沙岛的新增海岛地震台站2011—2016年间的连续地震背景噪声波形数据,使用互相关方法计算得到了台站间的互相关函数,并提取出Rayleigh面波群速度和相速度频散曲线.采用快速行进和子空间方法反演获得了南海及周边地区12~40s周期的Rayleigh面波群速度和相速度图像,并联合反演得到了研究区深至60km的三维S波速度结构.考虑到南海数千米厚海水层对于面波频散反演的严重影响,本文在反演模型中加入了水层,显著提高了反演结果的可靠性.成像结果表明:南海及周边地区地壳上地幔顶部S波速度结构存在显著的横向不均匀性,并与这一区域的主要构造单元具有较好的空间对应关系.在5~10km深度,莺歌海—宋红盆地区的低速异常特征可能与盆地较厚的沉积层有关.在5~15km深度,海域高速异常区与海盆空间位置具有高度一致性,推测与海盆区地壳厚度相对陆缘区明显偏薄有关.当深度从20km增加至30km,海盆区的高速特征扩展至了陆缘地区,反映了地壳厚度从海盆至陆缘逐渐增厚的趋势,与OBS(海底地震仪)深地震剖面给出的地壳精细结构结果一致.至35~60km深度,海盆的高速异常特征依然明显,且速度值随深度增加整体呈现上升的趋势,推测南海海盆区的岩石圈厚度应该大于60km.  相似文献   

16.
Seismic data from a 250 km long refraction profile on Rockall Bank have been re-interpreted to determine a detailed velocity-depth structure. The analysis was carried out using synthetic seismograms to match the amplitude and waveforms of the experimental records. The structure obtained from a travel-time analysis alone was found to be inadequate, and the final preferred velocity-depth model is defined more in terms of velocity gradients than of constant velocity layers. In the preferred structure a thin high-velocity layer, 6.7–6.9 km/s, was found in the upper crust at a depth of 7 km and the Moho transition was modelled by a velocity gradient zone 1.5 km thick with the velocity rising from 7.5 to 8.2 km/s. This new analysis supports the conclusion of the previous analysis: Rockall Bank is a continental fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号