首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Under seismic excitation, liquefied clean medium to dense cohesionless soils may regain a high level of shear resistance at large shear strain excursions. This pattern of response, known as a form of cyclic mobility, has been documented by a large body of laboratory sample tests and centrifuge experiments. A plasticity-based constitutive model is developed with emphasis on simulating the cyclic mobility response mechanism and associated pattern of shear strain accumulation. This constitutive model is incorporated into a two-phase (solid–fluid), fully coupled finite element code. Calibration of the constitutive model is described, based on a unique set of laboratory triaxial tests (monotonic and cyclic) and dynamic centrifuge experiments. In this experimental series, Nevada sand at a relative density of about 40% is employed. The calibration effort focused on reproducing the salient characteristics of dynamic site response as dictated by the cyclic mobility mechanism. Finally, using the calibrated model, a numerical simulation is conducted to highlight the effect of excitation frequency content on post-liquefaction ground deformations.  相似文献   

2.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

3.
Earthquake-induced excess pore pressure build-up and the associated shear strength degradation of liquefiable soils may result in bearing capacity degradation and seismic settlement accumulation of shallow foundations, two detrimental effects which need to be taken into account in order to ensure a viable performance-based design. This paper focuses on the first effect, in the case of strip and rectangle footings, resting on a deep liquefiable soil layer overlaid by a thinner non-liquefiable clay crust. A simplified analytical methodology is presented, based on the Meyerhof and Hanna [14] composite failure mechanism and the use of a reduced friction angle for the liquefied sand. The methodology is verified and evaluated against parametric numerical analyses with the Finite Difference Method, applying an advanced bounding surface constitutive model to account for the liquefied sand response. In addition, the existence of a critical clay crust thickness is explored, beyond which subsoil liquefaction does not affect the bearing capacity of the foundation.  相似文献   

4.
Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with uP formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class ‘B’ analysis of a centrifuge experiment is performed to simulate the dynamic response of level ground sites. The results of the numerical analyses demonstrate the capability of the critical sate two-surface plasticity model in producing pore pressures that are consistent with observations of the behavior of liquefiable sand in the centrifuge test.  相似文献   

5.
Damage of embankments during earthquakes is widely attributed to the liquefaction of foundation soil. Previous studies have investigated the dynamic response of embankments by mainly considering uniform sand foundation and a single earthquake event. However, the foundation of an embankment consists of many sublayers of soil from liquefiable sand to relatively impermeable layer, and during earthquakes a mainshock may trigger numerous aftershocks within a short time which may have the potential to cause additional damage to soil structures. Accordingly, the investigation of liquefaction-induced deformation of earthen embankments on various liquefiable foundation conditions under mainshock–aftershock sequential ground motions is carried out by a series of dynamic centrifuge tests in this study. The liquefiable foundation includes uniform sand profile, continuous layered soil profile, and non-homogeneous soil profiles. Effects of various foundation conditions on embankment deformations are compared and analyzed. From the test results, it is found that the embankment resting on non-homogeneous soil deposits suffer more damage compared to the uniform sand foundation of same relative density. The test results also suggest that the sequential ground motions have a significant effect on the accumulated deformation of embankment.  相似文献   

6.
Finite element (FE) response sensitivity analysis is an important component in gradient-based structural optimization, reliability analysis, system identification, and FE model updating. In this paper, the FE response sensitivity analysis methodology based on the direct differentiation method (DDM) is applied to a bounding surface plasticity material model that has been widely used to simulate nonlinear soil behavior under static and dynamic loading conditions. The DDM-based algorithm is derived and implemented in the general-purpose nonlinear finite element analysis program OpenSees. The algorithm is validated through simulation of the nonlinear cyclic response of a soil element and a liquefiable soil site at Port Island, Japan, under earthquake loading. The response sensitivity results are compared and validated with those obtained from Forward Finite Difference (FFD) analysis. Furthermore, the results are used to determine the relative importance of various soil constitutive parameters to the dynamic response of the system. The DDM-based algorithm is demonstrated to be accurate and efficient in computing the FE response sensitivities, and has great potential in the sensitivity analysis of nonlinear dynamic soil-structure systems.  相似文献   

7.
In the last 50 years, there have been many incidences of failure of gravity quay walls. These failures are often associated with significant deformation of liquefiable soil deposits. Gravity quay wall failures have stimulated great progress in the development of deformation-based design methods for geotechnical structures. In this paper, the effective-stress analysis method has been used in conjunction with a generalised elasto-plasticity constitutive model implemented into a finite element procedure. Various monotonic and cyclic triaxial paths are simulated in order to demonstrate the capabilities of the constitutive model. The FEM is validated by back analysis of a typical Port Island PC1 caisson type quay wall, which was damaged during the 1995 Hyogoken-Nanbu earthquake. The numerical results are compared with the observed data obtained consisting of seaward displacement, settlement and tilting. In addition, both the influence of permeability, on the generation of pore water pressure and the influence of the relative density of the backfill and foundation layers, on the residual deformation of gravity quay walls are investigated.  相似文献   

8.
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.  相似文献   

9.
Earthquake induced liquefaction continues to be a major threat to many engineered structures around the world. Analysis of liquefaction becomes particularly difficult for two-dimensional (and 3D) problems such as dam/foundation systems. Predominantly, analyses for such systems are performed utilizing some type of finite element or finite difference procedure. Verification or validation of the analyses relies on very limited field performance data with reduced knowledge of the full scope of system conditions or loading conditions.Research reported in this paper represents a portion of ongoing work to obtain a database of information useful for numerical model calibration and to gain a better understanding of the complex dynamics of liquefying foundations under earth dams. Specifically, a highly instrumented model of an earth dam with clay core founded on a liquefiable foundation subjected to earthquake loading is being studied. Properties of the liquefiable foundation are varied to determine the related effects on the overlying earth dam. In this paper, results from three centrifuge physical models will be presented. The models are identical, with the exception of the location (depth) of a liquefiable layer in the foundation, and are subjected to the same dynamic excitation. Results and discussion related to the significance of the liquefiable layer location within the foundation and damage to the earth dam are presented.  相似文献   

10.
Large earthquake-induced displacements of a bridge abutment can occur, when the bridge is built on a floodplain or reclaimed area, i.e., liquefiable ground, and crosses a water channel. Seismic responses of a bridge abutment on liquefiable ground are the consequence of complex interactions between the abutment and surrounding soils. Therefore identification of the factors dominating the abutment response is important for the development of simplified seismic design methods. This paper presents the results of dynamic three-dimensional finite element analyses of bridge abutments adjacent to a river dike, including the effect of liquefaction of the underlying ground using earthquake motions widely used in Japan. The analysis shows that conventional design methods may underestimate the permanent abutment displacements unless the following two items are considered: (1) softening of the soil beneath the liquefiable layer, due to cyclic shearing of the soil surrounding the piles, and (2) the forces acting on the side faces of the abutment.  相似文献   

11.
In this paper the formulation of a simplified model for predicting pore water pressure build-up under seismic loading is updated and applied to different soils. The model is directly based on the results of cyclic laboratory tests and it is based on the damage parameter concept, avoiding any arbitrary equivalence criterion necessary to compare the seismic demand to the cyclic strength of liquefiable soils. The model is suitable to be implemented into non-linear coupled seismic response analyses since it operates in the time domain. The analytical formulation is fully described and the calibration and the physical meaning of the model parameters are analysed in detail. Simple applications show the practical usefulness of the model with respect to other literature approaches.  相似文献   

12.
The technology of bio-grouting is a new technique for soft ground improvement. Many researchers have carried out a large number of experiments and study on this topic. However, few studies have been carried out on the dynamic response of solidified sand samples, such reducing liquefaction in sand. To study this characteristic of microbial-strengthened liquefiable sandy foundation, a microorganism formula and grouting scheme is applied. After grouting, the solidified samples are tested via dynamic triaxial testing to examine the cyclic performance of solidified sand samples. The results indicate that the solidified sand samples with various strengths can be obtained to meet different engineering requirements, the use of bacteria solution and nutritive salt is reduced, and solidified time is shortened to 1-2 days. Most importantly, in the study of the dynamic response, it is found that the MICP grouting scheme is effective in improving liquefiable sand characteristic, such as liquefaction resistance.  相似文献   

13.
The seismic response of a pile foundation is usually analyzed by approximate methods in practice. These methods typically neglect one or more of the important factors that affect seismic response such as inertial interaction, kinematic interaction, seismic pore water pressures, soil nonlinearity, cross stiffness coupling and dynamic pile to pile interaction. A nonlinear 3-D analysis is used to show how all these factors affect pile response, to demonstrate some of the consequences of using various approximate methods and to provide a comprehensive overview of how pile foundations behave during earthquakes in liquefiable and non-liquefiable soils.  相似文献   

14.
隧道可液化土层围岩对地震动作用非常敏感,可液化土层动孔压的产生和发展使得地下结构受到上浮作用,从而影响地下结构的稳定性.通过对可液化土层中隧道动力响应计算,研究了不同静应力场隧道围岩动孔压场分布、围岩液化区域分布以及衬砌结构仰拱底与拱顶的动孔压差变化.研究结果表明,不同静应力场对围岩可液化土的动孔压分布、液化区域分布及...  相似文献   

15.
土-地铁隧道动力相互作用的大型振动台试验:试验方案设计   总被引:16,自引:4,他引:16  
以南京地铁的建设背景为基础,对含有可液化土层的深厚软弱场地上双洞单轨的地铁区间隧道结构进行了大型振动台模型试验研究。根据本次试验的目的和特性,首先给出了模型体系相似比的设计基本原则,并对整个模型体系进行了相似设计,对模型土和模型结构的制备方法和模型材料的物理特性进行了室内试验研究,同时,根据对隧道地震反应分析的数值模拟结果,对传感器的选择及其布置方案进行了分析。最后,根据南京及其周边地区的地震环境,对台面输入地震动的选取及其加载方法进行了具体的阐述。试验结果表明本文对土-地铁区间隧道动力相互作用的大型振动台模型试验的设计方案是合理的,对相关试验结果的整理和分析见另文。  相似文献   

16.
The seismic response characteristics of underground structures in saturated soils are investigated. A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils. The accuracy of the model is validated using a classic example in literature. The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils. The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model. The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy. The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model, which provides a weaker confining action to the underground structure.  相似文献   

17.
遮帘式板桩码头作为一种新型的板桩结构型式,其抗震性能研究是设计建造过程中的重要环节。在FEM-FDM水土耦合计算的平台上引入循环弹塑性本构模型,借助FORTRAN编程软件形成饱和砂土动力液化分析的数值方法,可有效模拟饱和砂土在地震动力作用下的非线性及大变形特性,同时也可模拟砂土液化流动对遮帘桩和前墙的动土压力。研究表明:地震作用下可液化土层超孔隙水压力比增长并发生较大的水平流动变形,对前墙的水平破坏大于竖向破坏;前墙剪力最大值位于海床与前墙交界处;遮帘桩剪力最大值位移与前墙底平行的位置;后拉杆拉力逐渐变大,前拉杆拉力逐渐变小。通过对板桩码头地震液化灾害的分析,可为抗震和抗液化设计提供参考依据。  相似文献   

18.
19.
Site response analyses must take into account the nonlinear behavior of soils. This is typically achieved using an equivalent linear approach or using numerical analyses with an appropriate constitutive model. In this work a family of hypoplastic models is proposed for use in site response analyses. These nonlinear models use a rate-type tensorial equation and are capable of reproducing plastic deformation of soils for cyclic loading under both drained and undrained conditions. A methodology for the calibration of hypoplastic parameter for dynamic loading is proposed. The hypoplastic constitutive models are implemented in a finite element code and the site response of the Lotung downhole array site is used to validate the use of hypoplastic models for site response analysis. The hypoplastic models reproduce accurately site response at the Lotung site. The advantages and disadvantages of the hypoplastic models compared to other models are discussed.  相似文献   

20.
对由碎石桩和CFG桩构成的多桩型复合地基的作用机理进行分析,通过数值模拟,对多桩型复合地基的动力特性进行研究,探讨桩型配比、桩径、桩长、CFG桩桩体刚度和碎石桩桩体渗透性等设计参数对多桩型复合地基动力特性的影响。研究结果表明:相同条件下地震期多桩型复合地基的动变形小于碎石桩复合地基而大于CFG桩复合地基,震后沉降量相对较小,在工程设计时碎石桩与CFG桩的桩型配比宜为4∶5;随桩体长度、桩体直径和CFG桩刚度的增加,多桩型复合地基地震期的竖向动变形逐渐减小;随碎石桩桩体渗透性的增加,多桩型复合地基中的超动孔隙水压力减小,震后沉降量降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号