首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
川西地区台阵环境噪声瑞利波相速度层析成像   总被引:30,自引:12,他引:18       下载免费PDF全文
2006年中国地震局地质研究所地震动力学国家重点实验室在川西地区(26°N~32°N,100°E~105°E)布设了由297台宽频带数字地震仪组成的流动观测台阵.利用该密集台阵29°N以北156个台站2007年1~12月份的地震环境噪声记录和互相关技术,我们得到了所有台站对的面波经验格林函数和瑞利波相速度频散曲线,并进一步反演得到了观测台阵下方2~35 s周期的瑞利波相速度分布图像.本文结果表明,观测台阵覆盖的川滇地块、松潘-甘孜地块和四川盆地的地壳速度结构存在显著差异,具体表现为:(1)短周期(2~8 s)相速度分布与地表构造特征相吻合,作为川滇地块、松潘-甘孜地块和四川盆地之间的边界断裂,龙门山断裂带和鲜水河断裂带对上述三个地块上地壳的速度结构具有明显的控制作用,四川盆地前陆低速特征表明相应区域存在较厚的(约10 km)沉积盖层;(2)中周期(12~18 s)相速度分布表明,川滇地块和松潘-甘孜地块中上地壳速度结构存在明显的不均匀横向变化,并形成了尺度不同且高、低速相间的分块结构,而四川盆地中地壳整体上已经表现出相对高速;(3)长周期(25~35 s)相速度分布表明,松潘-甘孜地块,特别是川滇地块中下地壳表现为广泛的明显低速异常,意味着它们的中下地壳相对软弱,而四川盆地的中下地壳呈现整体性的相对高速,意味着四川盆地具有相对坚硬的中下地壳,并且以汶川地震的震中为界,龙门山断裂带的地壳结构显示了北段为高速异常,南段为低速异常的分段特征.  相似文献   

2.
2008年5月12日汶川MW7.9地震发生在龙门山断裂带。龙门山断裂带及其邻域的地壳上地幔三维速度结构的研究对于理解汶川大地震的动力学背景具有重要的意义。2006年10月至2009年10月,在国家重大基础研究项目(973)的支持下,中国地震局地质研究所地震动力学国家重点实验室在川西地区(26°~32°N,100°~105°E)布设了由297台宽频带数字地震仪组成的流动观测台阵(简称川西台阵)。根据川西台阵记录的环境噪声和远震波形数据,利用噪声成像技术和接收函数方法,我们研究了川西地区(29°~32°N,100°~105°E)地壳上地幔100km深度范围内的三维S波速度结构。本文得到的结果为研究川西高原和四川盆地的地壳结构提供了新的高分辨率观测证据。我们的结果表明:1)观测台阵覆盖的川滇地块、松潘-甘孜地块和四川盆地的地壳上地幔S波速度结构具有显着差异,龙门山断裂和鲜水河断裂带,作为地块间的边界断裂带,对两侧地壳结构具有明显的控制作用。2)观测台阵覆盖区域的地壳厚度存在明显差异,川滇地块的地壳厚度为60~64km,松潘-甘孜地块的地壳厚度为52~56km,四川盆地前陆的地壳厚度为46~52km,沿龙门山断裂带松潘-甘孜地块和四川盆地形成镶嵌结构,汶川地震震中处南北两侧的壳幔边界存在约6km的断错。3)四川盆地前陆低速特征表明相应区域存在厚度8~10km的沉积盖层,松潘-甘孜地块和川滇地块的中下地壳具有大面积分布的S波低速区,松潘-甘孜地块地壳平均泊松比高达0.29~0.31,汶川地震余震绝大多数分布在低速区上方的高速介质区域内,而四川盆地的中下地壳呈现整体性的高速特征,以汶川地震的震中为界,龙门山断裂带北段和南段的S波速度结构显示了明显的速度分段特征,其北段的S波速度总体上高于南段。4)本文给出的研究区地壳三维S波速度结构表明,川西高原中下地壳较为软弱,而四川盆地中下地壳的强度应明显高于松潘-甘孜地块,意味着四川盆地坚硬中下地壳可以阻挡松潘-甘孜地块向东的逃逸;另一方面,川西高原和川滇地块的中下地壳虽然均存在大面积的S波低速区,但松潘-甘孜地块内的地壳速度结构相对来说较为复杂,并形成了高、低速相间的结构特征,表明在四川盆地的阻挡作用下,该地块形成了折皱变形的结构。5)与S波低速区相应,松潘-甘孜地块和川滇地块中下地壳应处于部分熔融的状态,这对该区域存在中下地壳通道流(Channelflow)的推断是一个支持;但是,松潘-甘孜地块内是否存在中下地壳通道流仍有待进一步的深入研究。6)接收函数方位各向异性的偏振分析表明,以汶川地震震中为界,龙门山断裂西南侧处于挤压状态,而其东北侧的主压应力方向与断层走向大体平行,推断先存应力场可能驱动了汶川地震逆冲破裂之后沿龙门山断裂向北东方向的走滑破裂。  相似文献   

3.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

4.
本文使用川西密集地震台阵记录的面波资料,利用程函方程面波成像方法获得了周期为14—60 s的瑞雷波相速度及方位各向异性分布。结果显示:川滇菱形地块的川西北地块内部的低速异常明显,其下地壳各向异性快波方向以NS向为主,松潘—甘孜地块内部的低速异常稍弱,下地壳各向异性快波方向以NW?SESE向为主,表明川西北地块可能存在下地壳通道流,松潘—甘孜地块内部存在的通道流相对较弱;龙门山断裂带和丽江—小金河断裂两侧的速度结构和方位各向异性均有明显差异,可推测青藏高原内部的地壳流在东部和南部分别受高速、高强度的四川盆地和滇中地块阻挡,沿高原边界带发生了侧向流动;周期大于25 s的面波方位各向异性方向为NW?SE;与SKS分裂优势方向相近,说明四川盆地的剪切波各向异性可能主要源于上地幔;而龙门山断裂带附近壳幔各向异性较为复杂,面波方位各向异性与SKS分裂的NW?SE向弱各向异性存在差异,表明该处的剪切波各向异性可能来自地幔更深处,有待进一步研究。   相似文献   

5.
川西龙门山及邻区地壳上地幔远震P波层析成像   总被引:31,自引:13,他引:18       下载免费PDF全文
本文利用川西地震台阵记录到的远震P波走时数据和非线性层析成像算法,获得龙门山地区400 km深度范围内的三维P波速度结构.为了适应川西地区复杂的地质结构,本文的层析成像方法采用了快速行进三维走时计算算法和Tarantola非线性反演算法.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异及该区深部动力学特征.本文的研究表明:1)研究区地壳上地幔P波速度结构具有较为明显的分区特征,松潘-甘孜地块和川滇地块岩石圈速度较低,四川盆地岩石圈速度较高,四川盆地的岩石圈厚度从南250 km向北逐渐减薄至100 km.松潘-甘孜地块上地幔存在地幔上涌的特征.2)川滇地块和四川盆地仅是垂直接触关系,而在龙门山地区四川盆地前缘存在减薄的现象,并伴随松潘-甘孜地块上地幔低速物质有侵入四川盆地岩石圈下方的特征,这显示了四川盆地与松潘-甘孜地块和川滇地块的动力学关系的差异.3)以映秀为界,龙门山断裂带被从松潘-甘孜侵入的低速异常分为南北两段:龙门山南段和龙门山北段,汶川大地震及其余震序列均分布在龙门山断裂带的北段.在青藏高原向东挤压和地幔上涌的双重作用下造成松潘-甘孜地块隆升,由于汶川处于龙门山北段的最南端,应力容易在此集中.这些因素可能是汶川MS8.0地震的基本动力学背景.本文的结果不支持四川盆地的俯冲及层间流动的动力学模型.  相似文献   

6.
黎源  雷建设 《地球物理学报》2012,55(11):3615-3624
本研究使用中国地震局地壳应力研究所2010—2011年期间在云南地区布设流动地震台站以及青藏高原周边地区固定地震台站记录到的波形资料,提取了大量高质量Pn波到时资料.联合中国地震台网观测报告,我们获得了一个新的青藏高原东缘上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区内上地幔顶部存在明显横向不均匀性.古老盆地和稳定地台区如四川盆地、柴达木盆地、拉萨地块和阿拉善块体呈现为明显高波速异常,而祁连山至西秦岭褶皱带和川滇菱形块体北部等为相对弱高波速异常.在龙日坝断裂带以东的松潘—甘孜地块往南沿安宁河—则木河断裂至川滇菱形块体南部显示为一条近南北向明显低波速异常.三江褶皱系、缅甸弧俯冲带以及四川盆地东南等地区为明显低波速异常.地壳强震多发生在高波速异常边缘或高低波速异常过渡带上,表明地壳强震的孕育可能还与地幔构造作用存在一定相关性.青藏高原东构造结的各向异性快波方向呈顺时针旋转分布,与印度—欧亚碰撞密切相关.龙门山断裂带东西两侧的各向异性快波方向发生明显变化,由其西侧松潘—甘孜地块下方的NE向转变为四川盆地下方的近EW向,说明青藏高原物质流动遇四川盆地后分为NE和SW向两支.在川滇地区26°N以南地区上地幔顶部各向异性呈现近NS向与地表GPS观测相一致,但与SKS分裂结果存在较大差异,可能表明地壳与上地幔顶部形变表现为耦合现象,而上地幔顶部至岩石圈内部则存在解耦现象.  相似文献   

7.
根据本文提出的更为严格的地震数据筛选方法——横向分区地震均值筛选法,选取了四川、云南、重庆和贵州地震台网的224个固定台站和49个流动台站在2008年1月1日—2017年12月31日期间记录的48,177个地震、372,483条初至P波绝对到时数据以及2,413,407条精度较高的相对到时数据,利用区域双差地震层析成像方法联合反演了青藏高原东南缘川滇地区三维P波速度结构和地震震源参数.研究结果表明:(1)川滇地区上地壳结构横向不均匀性明显,四川盆地上地壳10 km深度范围内表现为低速异常,而松潘—甘孜地块、滇中地块则表现为明显的高速异常;(2)川滇地区地震主要沿着边界断裂分布,大多数地震为浅源地震,震源深度主要集中在5~15 km深度范围内,震源主要位于高速异常与低速异常交界区域,且偏向高速异常体一侧;(3)震源分布研究推测龙门山断裂带前山断裂东南侧可能存在一条倾向北西、倾角约为40.的北东向走向的隐伏断裂,且为芦山地震的主要发震断裂;(4)川滇地区中下地壳低速异常体可能反映了中下地壳弱物质流的存在,中下地壳物质流不是广泛分布在川滇地区,而是沿着川滇块体东部有限的通道向南流动.中下地壳流可能是沿着鲜水河断裂带向东南方向流出,在雅安一带遇到坚硬稳定的四川盆地的阻挡,一部分物质向北东方向流动,而另一部分物质转向南沿着安宁河断裂带和则木河断裂带分布,并继续向南沿着小江断裂带流动.  相似文献   

8.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的S波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10~15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘-甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的.松潘-甘孜块体是低S波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

9.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的s波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10—15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘.甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的,松潘-甘孜块体是低s波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

10.
2008年5月12日我国四川省汶川地区发生了震惊世界的MS8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S波速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km. 我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征可以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜并有较为明显的横向变形,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仅为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31; (3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内. 本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不存在四川盆地向西侧的俯冲.我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳在壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高强度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

11.
青藏高原东南缘是研究印度—欧亚板块碰撞过程、块体间相互作用和壳幔变形机制的重要地区.本文利用川滇地区流动地震台阵和固定地震台网共557个台站的连续波形数据,基于改进的背景噪声处理流程和分析方法得到了6023条瑞利波群速度频散曲线,反演获得了6~48s的瑞利波群速度分布图像.结果显示在四川盆地内部短周期群速度分布较好地揭示了盆地内沉积层厚度的横向变化.在30~48s周期,四川盆地西部群速度存在南低、北高的特征,推测是南部中下地壳和上地幔温度较高引起的.温度的增高降低了地壳的力学强度,在青藏高原东向挤压作用下盆地西南部地壳更易发生变形,并导致脆性上地壳在新生代产生地壳缩短和褶皱、断裂等地质活动.攀枝花及其周边地区从地壳浅部至上地幔深度的高速异常体,可能与基性和超基性岩的侵入有关.该高速体具有较大的介质强度,在一定程度上阻碍了青藏高原物质东南向的运移,这可能是造成丽江—小金河断裂两侧巨大高程差异的重要因素.自24s开始,南盘江盆地表现为明显的高速异常,与华南块体西南部其他区域的深部结构存在明显差异.反演的S波速度结构揭示,自中上地壳至上地幔,南盘江盆地的速度一直高于北侧其他区域.结合此地区的地壳运动模式,推测介质S波速度较高、力学强度较大的南盘江盆地对青藏高原物质的东南向逃逸具有一定的阻挡作用.  相似文献   

12.
王琼  高原 《地球物理学报》2018,61(7):2760-2775
本研究收集了甘肃、青海、宁夏等118个宽频带数字地震台站的连续波形资料,利用噪声互相关,经过计算和筛选,在5~38 s范围内,共得到5773条瑞利波相速度频散曲线.然后采用1°×1°的网格划分,反演获得青藏高原东北缘相速度和方位各向异性分布.结果表明:短周期8~12 s内,鄂尔多斯从低速异常变为高速异常;该周期范围内各向异性结果与区域断裂走向有很好的一致性.18~25 s周期内,祁连地块、松潘-甘孜地块、羌塘地块低速异常范围逐渐变大,随周期增加地壳低速异常与人工探测结果相符;鄂尔多斯表现为速度随周期增加逐渐变大,说明其中下地壳速度相对偏高,不存在低速异常;该周期范围内的各向异性特征表现为,祁连地块和松潘甘孜地块大致呈NW-SE方向,而青藏高原内部快波方向显示了顺时针旋转的形态.在30~35 s范围内面波速度主要受莫霍面深度和莫霍面附近介质速度的影响,与地壳厚度分布有非常好的吻合.综合不同方法获得的各向异性研究结果,支持印度-欧亚板块的碰撞使青藏高原东北缘地壳发生缩短和逐渐隆升的观点,认为整个岩石圈的垂直缩短变形是青藏高原东北缘的主要形成机制.  相似文献   

13.
青藏高原东缘龙门山逆冲构造深部电性结构特征   总被引:4,自引:12,他引:4       下载免费PDF全文
通过对汶川地震前观测的碌曲—若尔盖—北川—中江大地电磁剖面的数据处理和反演解释,揭示了沿剖面的松潘—甘孜地块、川西前陆盆地、龙门山构造带及秦岭构造带50 km深度的电性结构特征及相互关系,表明青藏高原东缘向东挤压,迫使向东流动的地壳物质沿高原东缘堆积,并向扬子陆块逆冲推覆.龙门山恰好位于松潘—甘孜地块与扬子陆块对挤部位,主要受松潘—甘孜地块壳内高导层滑脱和四川盆地基底高阻体阻挡的约束,地壳深部存在着西倾且连续展布的壳内低阻层,表明龙门山深部确实存在着逆冲推覆构造,其逆冲断裂系中的三条断裂不仅以不同的倾角向西北倾斜,并且向深部逐渐汇集,但茂县—汶川断裂可能在深部与北川—映秀断裂是分离的.龙门山两翼的四川盆地和松潘甘孜褶皱带的电性结构既具有明显差异性,又具有一定的相关性.四川盆地显示巨厚的低阻沉积盖层和连续稳定的高阻基底的二元电性结构,而松潘—甘孜地块则表现为反向二元结构,即上部大套高阻褶皱带,下部整体为低阻的变化带,龙门山逆冲构造带本身又表现为松潘地块逆冲上覆在四川盆地之上,构成上部高阻褶皱带、中部低阻逆冲断裂带和底部盆地高阻基底的三层电性结构.对比龙门山逆冲构造断裂带的西倾延伸上下盘两侧的两个反对称的二元电性结构,松潘区块深部推断的结晶基底与龙门山断裂带下盘推断的下伏盆地结晶基底又存在某种内在对应关系,推断可能存在一个西延至若尔盖地块的泛扬子陆块.因此,龙门山构造带地壳电性结构研究对于揭示青藏高原东缘陆内造山动力过程,探索汶川大地震的深部生成机理都具有重要意义.  相似文献   

14.
云南数字地震台站下方的S波速度结构研究   总被引:36,自引:13,他引:36       下载免费PDF全文
通过对云南数字地震台站的宽频带远震接收函数反演,获得了云南地区数字地震台站下方0-0km深度范围的S波速度结构.结果表明,云南地区地壳厚度变化剧烈,中甸、丽江等西北部地区,地壳厚度达62km左右,景洪、思茅和沧源等南部地区,地壳厚度仅为32-34km.厚地壳从西北部向东南方向伸展,厚度和范围逐渐减小,至通海一带地壳厚度减为42km,其形态和范围与小江断裂和元江断裂围成的川滇菱形块体相一致.地壳厚度较小的东、南部地区Moho面速度界面明显;在地壳厚度较大或变化剧烈的地区,Moho面大多表现为S波速度的高梯度带.云南地区S波速度结构具有很强的横向不均匀性.km深度以上,北部地区S波速度明显低于南部地区,在-20km深度范围内,北部地区的S波速度比南部地区高.地壳内部S波速度界面的连续性较差,低速层的深度和范围不一,近一半的台站下方不存在明显的低速层.受南部地区上地幔的影响,40-50km深度范围内,S波速度南部高、北部低,高速区随深度增加逐渐向北推移,低速异常区形态与川滇菱形块体的形态趋向一致.70-80km深度的上地幔速度分布与云南地区大震分布具有一定的相关性.  相似文献   

15.
Rayleigh wave phase velocities of South China block and its adjacent areas   总被引:2,自引:0,他引:2  
Using records of continuous seismic waveforms from 609 broadband seismic stations in the South China Block and its adjacent areas in 2010–2012, empirical Green's functions of surface waves were obtained from cross-correlation functions of ambient noise data between these stations. High quality phase velocity dispersion curves of Rayleigh waves were obtained using time-frequency analysis. These interstation dispersion curves were then inverted to build Rayleigh wave phase velocity maps at periods of 6–50 s. The results of phase velocity maps indicate that phase velocities at 6–10 s periods are correlated with the geological features in the upper crust. Major basins and small-scale grabens and basins display slow velocity anomalies; while most of the orogenic belts and the fold belts display high velocity anomalies. With the gravity gradient zone along Taihang Mountain to Wuling Mountain as the boundary for the phase velocity maps at period of 20–30 s, the western area mainly displays low velocity anomalies, while the eastern side shows high velocity anomalies. Phase velocities in the eastern South China Block south to the Qinling-Dabie orogenic belt is higher than that in the eastern North China Block to the north, which is possibly due to the differences of tectonic mechanisms between the North China Craton and the South China Block. The phase velocities at periods of40–50 s are possibly related to the lateral variations of the velocity structure in the lower crust and upper mantle: The low-velocity anomalies in the eastern part of the Tibetan Plateau are caused by the thick crust; while the Sichuan Basin and the southern part of the Ordos Basin display distinct high-velocity anomalies, reflecting the stable features of the lithosphere in these blocks. The lateral variation pattern of phase velocities in the southern part of the South China Block is not consistent with the surface trace of the block boundary in the eastern Yunnan Province and its vicinities. The phase velocities in the Sichuan Basin are overall slow at short periods and gradually increase with period from the central part to the edge of the basin, indicating the features of shallower basement in the center and overall stable lithospheric mantle of the basin. The middle and upper crust of the southern Ordos Basin in the North China Block is heterogeneous, while in lower crust and the uppermost mantle the phase velocities mainly exhibit high anomalies. High-velocity anomalies are widespread at the middle of the Qinling-Dabie orogenic belt, as well as the areas in southeastern Guangxi with Caledonian granite explosion, but its detailed mechanism is still unclear.  相似文献   

16.
龙门山断裂带位于青藏高原东缘,在中生代和晚新生代经历强烈的构造变形,急剧抬升,是研究青藏高原隆升和扩展动力学过程的重要窗口.本文利用起伏地形下的高精度成像方法,对"阿坝一龙门山一遂宁"宽角反射/折射地震数据重新处理,通过走时反演重建研究区地壳速度结构.剖面自西向东跨越松潘一甘孜块体、龙门山断裂带和四川盆地,不同块体速度结构表现了显著的差异.松潘甘孜块体地表复理石沉积层内有高速岩体侵入,低速层低界面起伏不平反映了该区的逆冲推覆构造.中下地壳速度横向上连续变化,平均速度较低(约6.26 km·s~(-1)).四川盆地沉积层西厚东薄,并在西侧出现与挤压和剥蚀作用相关的压扭形态.中下地壳西薄东厚,平均速度较高(约6.39 km.s~(-1)).龙门山断裂带是地壳速度和厚度的陡变带,Moho面自西向东抬升约13 km.在整个剖面上Moho面表现为韧性挠曲,中下地壳横向上连续变化,推测古扬子块体已到达松潘甘孜块体下方.松潘甘孜块体下方中下地壳韧性变形,并在底部拖曳着被断裂切割的脆性上地壳,应力在不同断裂上积累和释放,诱发大量地震.  相似文献   

17.
利用"中国地震科学台阵探测"在南北地震带北段布设的670套宽频带地震台站记录到的面波资料,使用新近发展的程函方程面波层析成像方法,获得了青藏高原东北缘及周边地区12~60 s周期范围比以往成像结果具有更高分辨率的瑞利面波相速度分布图像.青藏高原东北缘的祁连褶皱系西段、秦岭褶皱系西段和松潘一甘孜褶皱系,在16~60s周期范围内均显示出明显的低速异常分布,表明该地区的地壳力学强度较低,在强烈的构造应力作用下易发生形变.与西段不同,祁连褶皱系东段和秦岭褶皱系中段的相速度分布特征揭示,其中下地壳的速度明显高于高原内部区域.鄂尔多斯块体整体上表现为稳定块体具有的高速特征,但其西部边缘在中上地壳的速度比块体中部地区偏低,且存在一定的不均匀性.鄂尔多斯块体西北缘的临河断陷盆地和西缘的银川断陷盆地,在较短的周期范围内(12~20 s)表现为局部低速特征,但与银川断陷盆地不同,临河断陷盆地的低速特征可一直延续至60 s周期以上,表明该盆地下方地壳及上地幔速度明显偏低,可能与深部热作用有关.阿拉善块体与其北部地区的速度差异主要表现在中上地壳,这一现象值得今后进一步探讨.基于程函方程面波层析成像方法给出了青藏高原东北缘及周边地区高分辨率的成像结果,揭示了以往面波层析成像难以获得的深部细节特征,为该地区的深部构造研究提供了新的信息.  相似文献   

18.
In order to acquire a better velocity structure of the crustal and uppermost mantle beneath Shanxi area, we obtain the group and phase velocities of Rayleigh wave of the periods 8s to 50s in Shanxi and adjacent area using ambient seismic noise recorded at 216 broad-band stations. All available vertical-component time series for 2014 have been cross-correlated to yield estimates of empirical Rayleigh wave Green's function. Group and phase velocity dispersion curves for Rayleigh wave are measured for each interstation path by applying frequency-time analysis. It describes finer velocity structure of the crust and upper mantle in Shanxi, which reflects the geological structure characteristics at different depths. The resolution is within 50km and the resolution of part periods can reach 40km.The Rayleigh wave group and phase speed maps at short periods(8~18s and 10~22s)show clear correlations with shallow geological structures. Mountain areas on both sides of Shanxi depression zone show apparent high-velocity anomaly, except for low-velocity anomaly in the Taiyuan Basin, Linfen-Yuncheng Basin and Weihe Basin. Especially, the areas of Youyu County-Pianguan County-Kelan County-Shuozhou City and Jingle County-Lishi District of Lüliang City in Lüliang Mountains, and Yu County-Fuping County-Yi County and Yangcheng County-Licheng County in Taihang Mountains, present higher velocity anomaly. In addition, the velocity is lowest in the Weihe Basin, and the amplitude of low velocity decreases gradually from the south to the north of the basins in Shanxi, which probably is related to the process of gradual stretching and development of the Shanxi rift zone from the southwest to the northeast. The obvious velocity difference across the latitude of 38°N exists at 18~30s period of phase and 24~35s period of group velocity maps, which is probably related to the deep and shallow Moho depth variation in the south and north of Shanxi and the suture zone of ancient blocks including "hard" southern block and "soft" northern block. At the same time, the research result of receiver function reveals that partial melting of the lower crust occurs in the northern Taihang Mountains, while the southern section remains stable(Poisson's ratio is above 0.3 in the northern Taihang Mountains and 0.25~0.26 in the southern section). The phase velocity map at 30~50s period clearly shows NW velocity gradient belt, and the low velocity anomaly in the northeast side may be related to Cenozoic volcanism. Meanwhile, the eastern border of Ordos block is the western faults of central basins in Shanxi depression zone. However, some research results indicate that the above border is Lishi Fault in the surface, inferring that the Ordos block shows a shape of wide in the upper and narrow in the lower part from the surface to deep. The Datong volcanic area at 18~45s period of phase and 24~35s period of group velocity maps shows low velocity of trumpet shape from shallow to deep, related to the upwelling of hot material from lower mantle in the Cenozoic causing a large area of intense magmatic activity. It indicates the more specific upwelling channel of Datong volcanoes simultaneously.  相似文献   

19.
利用地震面波频散重建川滇地区壳幔S波速度   总被引:5,自引:2,他引:3       下载免费PDF全文
张智  陈赟  李飞 《地球物理学报》2008,51(4):1114-1122
利用适配滤波频时分析技术分析覆盖川滇地区的长周期面波记录,计算了周期10~100 s内的面波群速度频散,对研究区进行划分尺度大小1.5°×1.5°分格后,采用射线追踪方法求取各分段射线的长度和时间,得到各个格子的纯路径频散.继而采用阻尼最小二乘法求解,反演得到该研究区壳幔S波速度分布.研究结果表明,川滇地区表现出地壳增厚和缩短,在地壳和上地幔顶部,川滇菱形块体内部与其外部相比,虽然存在局部速度负异常,总体上呈相对高速,其周边的走滑断裂带呈现深至上地幔顶部的负速度异常,这有助于地壳块体沿断裂的侧向挤出;此外,云南西部和四川西部壳内和上地幔高导层的存在被认为是与部分熔融的物质或与滑脱构造相关联;从纬向剖面和经向剖面可以得到四川盆地莫霍面平均深度大约为45 km,云南地区莫霍面深度南北方向不一致,云南地区最北端深度达到49 km,南端莫霍面深度大约为36 km,这说明不同构造块体在构造运动过程中受到影响的程度不同.  相似文献   

20.
基于青藏高原东北缘及邻区流动密集地震台阵——喜马拉雅二期2013年12月至2015年8月期间的三分量连续波形数据,采用背景噪声成像方法获得了Rayleigh波周期为6~30 s和Love波6~25 s的二维相速度.6~12 s Rayleigh和Love波相速度在鄂尔多斯盆地及银川—河套地堑呈现明显的低速异常,而在西秦岭造山带和中亚造山带则显示高速异常.16~25 s的相速度同时受中下地壳及上地幔顶部速度结构和地壳厚度影响.此周期范围内,位于青藏高原的祁连地块和松潘甘孜地块北部呈现大范围相速度低速异常,青藏高原周边的鄂尔多斯和西秦岭造山带表现为高速异常.青藏高原与周边块体相速度的横向不均匀性,可能反映了构造活动或者地壳厚度的差异.此外,中亚造山带在周期16~20 s时,Rayleigh波相速度高低相间,但Love波大范围高速异常,两者差异可能反映了径向各向异性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号