首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events. Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg ha(-1) per event while losses of N and P ranged from 10 to 1900 g ha(-1) and from 1 to 71 g ha(-1) per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg l(-1)), total N (range: 101-4000 microg l(-1)) and total P (range: 14-609 microg l(-1)). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent. Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg l(-1)), total N (range: 650-6350 microg l(-1)) and total P (range: 50-1500 microg l(-1)) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes. These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.  相似文献   

2.
Clearing of native vegetation and replacement with cropping and grazing systems has increased nutrient exports to the Great Barrier Reef (GBR) to a level many times the natural rate. We present a technique for modelling nutrient transport, based on material budgets of river systems, and use it to identify the patterns and sources of nutrients exported. The outputs of the model can then be used to help prioritise catchment areas and land uses for management and assess various management options. Hillslope erosion is the largest source of particulate nutrients because of its dominance as a sediment source and the higher nutrient concentrations on surface soils. Dissolved nutrient fractions contribute 30% of total nitrogen and 15% of total phosphorus inputs. Spatial patterns show the elevated dissolved inorganic nitrogen export in the wetter catchments, and the dominance of particulate N and P from soil erosion in coastal areas. This study has identified catchments with high levels of contribution to exports and targeting these should be a priority.  相似文献   

3.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

4.
To improve quantitative understanding of mixed‐land‐use impacts on nutrient yields, a nested‐scale experimental watershed study design (n = 5) was applied in a 303(d), clean water act impaired urbanizing watershed of the lower Missouri River Basin, USA. From 2010 to 2013, water samples (n = 858 sample days per site) were analysed for total inorganic nitrogen (TIN‐N), nitrite (NO2–N) nitrate (NO3–N), ammonia (NH3–N), and total phosphorus (TP‐P). Annual, seasonal, and monthly flow‐weighted concentrations (FWCs) and nutrient yields were estimated. Mean nutrient concentrations were highest where agricultural land use comprised 58% of the drainage area (NH3 = 0.111 mg/l; NO2 = 0.045 mg/l; NO3 = 0.684 mg/l, TIN = 0.840 mg/l; TP = 0.127 mg/l). Average TP‐P increased by 15% with 20% increased urban land use area. Highly variable annual precipitation was observed during the study with highest nutrient yields during 2010 (record setting wet year) and lowest nutrient yields during 2012 (extreme drought year). Annual TIN‐N and TP‐P yields exceeded 10.3 and 2.04 kg ha?1 yr?1 from the agricultural dominated headwaters. Mean annual NH3–N, NO2–N, NO3–N, TIN‐N, and TP‐P yields were 0.742, 0.400, 4.24, 5.38, and 0.979 kg ha?1 yr?1, respectively near the watershed outlet. Precipitation accounted for the majority of the explained variance in nutrient yields (R2 values from 0.68 to 0.85). Nutrient yields were also dependent on annual precipitation of the preceding year (R2 values from 0.87 to 0.91) thus enforcing the great complexity of variable mixed‐land‐use mediated source‐sink nutrient yield relationships. Study results better inform land managers and best management practices designed to mitigate nutrient pollution issues in mixed‐land‐use freshwater ecosystems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The quantification of diffuse input loads of nutrients to rivers is a challenge due to limited observed data. This study aimed to develop a simple model that can relate in-stream nutrient concentrations due to diffuse sources with land cover categories within a catchment affecting a river reach. A previously developed point-diffuse model was used to distinguish the diffuse nutrient signature within South African Department of Water Affairs historical monitoring flow and water quality data for selected river gauges. The diffuse signature was related to land cover categories within respective catchments using Principal Component Analysis (PCA), and influential land cover categories were used to construct land cover models relating land cover categories with in-stream nutrient concentrations. Generally, the land cover categories affecting diffuse signatures of nutrients as indicated by PCA were expected. Using land cover information, the developed land cover models performed well in re-creating the diffuse in-stream nutrient signature as determined by the point-diffuse model.  相似文献   

6.
Concentrations of suspended particulate matter (SPM), NO3-N and P fractions: PO4-P, dissolved organic P (DOP), particulate P (PP) and bioavailable exchangeable P were examined over 5 storm events in two nested agricultural catchments in NE Scotland: a (51 km2) catchment and its headwater (4 km2). NO3-N showed anticlockwise hysteresis for all storms in both catchments. In contrast, the headwater showed strong clockwise hysteresis of SPM, dissolved and particulate P concentrations, but which weakened through summer to spring. Less pronounced hysteresis of P forms in the larger catchment was attributed to a combination of factors: a less energetic system, nutrient leaching from the floodplain, a point source of a small sewage treatment works and the occurrence of coarser soil and sediment parent materials with less P adsorption and transport capacity. The headwater exhibited a strong ‘first flush’ effect of sediment and dissolved P, particularly following dry conditions, received a significant transfer of readily-solubilized organic P from the surrounding soils in late summer and after manure applications in winter, and was the likely cause of large sediment associated P signals observed in the 51 km2 catchment. Our results suggest that steeper gradient headwaters should be targeted for riparian improvements to mitigate soil erosion from headwater fields. The efficiency of riparian erosion controls is also dependant on the size of the store of fine sediment material within the stream channel and this may be large.  相似文献   

7.
Anders Malmer 《水文研究》2004,18(5):853-864
In 1998 a wild fire struck a paired catchment research area under long‐term monitoring of hydrological and nutrient budgets. Streamwater quality as concentrations of dissolved and suspended particulate matter was monitored during 1·5–2·5 years after the fire in streams from seven different catchments. As the catchments, due to earlier experimental treatments, had different vegetations, varying effects related to different fire intensities were observed. The highest, mean stormflow, suspended sediment concentrations resulted from intensive fire in secondary vegetation that had experienced severe soil disturbance in previous treatments (crawler tractor timber extraction 10 years earlier). Stormflow concentrations were typically still about 400 mg l?1 in 1999 (10–21 months after the fire), which was about the maximum recorded concentration in streams during initial soil disturbance in 1988. Forest fire in natural forest resulted in less than half as high stormflow concentrations. For dissolved elements in streamwater there was a positive relation between fuel load (and fire intensity) and concentration and longevity of effects. Stream baseflow dissolved nutrient concentrations were high in the months following the fire. Mean baseflow K concentrations were 8–15 mg l?1 in streams draining catchments with intensive fire in secondary vegetation with large amounts of fuel. After controlled fire for forest plantation establishment in 1988 corresponding concentrations were 3–5 mg l?1, and after forest fire in natural forest in this study about 2 mg l?1. This study shows differences in response from controlled fire for land management, forest fire in natural forests and wild fires in manmade vegetations. These differences relate to resistance and resilience to fire for the involved ecosystems. There is reason to believe that wild fires and repeated wild fires during or after droughts, in successions caused by human influence, may lead to larger losses of ecosystem nutrient capital from sites compared with forest fires in natural forests. As fire in the humid tropics becomes more common, in an increasingly spatially fragmented landscape, it will be important to be aware of these differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
An improved laboratory respiration fermentor construction for batchwise operations by which permeations of gases through connecting rubber tubings could be avoided is described. From the registration of curves for oxygen consumption during batchwise treatment of waste water from coal gasification at 37°C a decrease of the COD reduction rate is observed when the dissolved oxygen concentration decreased to below 0,7 mg/l. At dissolved oxygen concentrations above 0,7 mg/l, biokinetic data were determined which on account of the improved respiratory fermenter construction diverge strongly from the values formerly given \documentclass{article}\pagestyle{empty}\begin{document}$({\rm \mu = 0,24 h}^{{\rm - 1}};Y_{\frac{x}{{{\rm O}_2 }}} = 0,57{\rm g\; OBTSZ/g O}_{\rm 2};Y_{\frac{x}{s}} = 0,32{\rm g\; OBTSZ/g\; COD}) $\end{document}. Investigations performed in the thermophilic range (55°C) led at dissolved oxygen concentration of 1,5 mg/l to significant slower COD-reduction rates whereas at dissolved oxygen concentration of 1,5 mg/l the efficiency of COD-reduction was significantly higher than in the mesophilic range. The results obtained at different dissolved oxygen concentrations and different treating temperatures are discussed.  相似文献   

9.
The concentrations of chlorophyll-a (chl-a), total suspended solids (TSS) and the absorption coefficient of colored dissolved organic matter (aCDOM(400)) are estimated in Case II waters using medium resolution imaging spectrometer (MERIS) satellite (full resolution [FR] level 1b, 300 m resolution) and AISA airborne spectrometer data acquired during a spring bloom in the Gulf of Finland, Baltic Sea on April 27, 2004. The accuracy of the estimation is analyzed using empirical band-ratio algorithms together with in situ observations that include water samples analyzed in a laboratory (variation ranges: 22–130 μg/l, 2.9–20 mg/l, and 1.29–2.61 m−1 for chl-a, TSS and aCDOM(400), respectively). Additional in situ estimates (transects) on these characteristics are available through absorption and scattering coefficients measured with an ac-9 absorption and attenuation meter installed in a flow-through system. The retrieval accuracy (R2) of all three water quality characteristics with MERIS data is close to or above 0.9, while the RMSE is 7.8 μg/l (22%), 0.74 mg/l (16%) and 0.08 m−1 (5%), for chl-a, TSS and aCDOM(400), respectively. The validity of the chl-a algorithm is tested using nine additional data points. The BIAS-error for these points is 5.2 μg/l and the RMSE is 10.6 μg/l. The effects of changes in the atmospheric characteristics on band-ratio algorithms in cases where no concurrent in situ reference data are available are analyzed using the MODerate spectral resolution atmospheric TRANSmittance algorithm and computer model (MODTRAN). The additional error due to these changes is estimated to be below 20% for the applied ratio algorithms. The water quality data available in the level 2 MERIS-product distributed by the European Space Agency did not include valid results for the date investigated here.  相似文献   

10.
The heterogeneous nature of both groundwater discharge to a lake (inflow) and nitrate concentrations in groundwater can lead to significant errors in calculations of nutrient loading. Therefore, an integrated approach, combining groundwater flow and transport modelling with observed nitrate and ammonium groundwater concentrations, was used to estimate nitrate loading from a catchment via groundwater to an oligotrophic flow‐through lake (Lake Hampen, Denmark). The transport model was calibrated against three vertical nitrate profiles from multi‐level wells and 17 shallow wells bordering a crop field near the lake. Nitrate concentrations in groundwater discharging to the lake from the crop field were on average 70 times higher than in groundwater from forested areas. The crop field was responsible for 96% of the total nitrate loading (16.2 t NO3/year) to the lake even though the field only covered 4.5% of the catchment area. Consequently, a small change in land use in the catchment will have a large effect on the lake nutrient balance and possible lake restoration. The study is the first known attempt to estimate the decrease of nitrate loading via groundwater to a seepage lake when an identified catchment source (a crop field) is removed.  相似文献   

11.
Lotic ecosystems in urban areas are severely impacted by anthropogenic environmental stressors, such as deforestation and nutrient pollution, due to socioeconomic activities in the catchment. To work out measures for identification and mitigation of concurrent multiple stressors to a stream system, it is necessary to assess the relative importance of impacts by the individual stressors. Here we aimed to discriminate the covarying effects of nutrient pollution and deforestation on benthic macroinvertebrate communities in an urbanised tropical stream system. In the Silang-Santa Rosa Subwatershed (SSRS) of Laguna de Bay, benthic macroinvertebrates and physicochemical environments were investigated at 13 sites varying in human population density, riparian canopy, and land-use pattern as indicated by geographic information systems in the catchment. Regression and multivariate analyses were performed to identify the drivers of the biodiversity loss and understand its underlying mechanisms. In the SSRS, where rapid economic growth took place without updating poorly installed wastewater treatment plants (WWTPs), domestic activity indicated by human population density in the catchment was the primary factor in generating heavy phosphorous loadings (mean total phosphorus = 0.91; range = 0–1.50 mg/l) that caused hypoxia (mean dissolved oxygen = 2.98; range = 0.13–6.27 mg/l) in stream waters and subsequently reduced macroinvertebrate diversity (mean H’ = 0.91; SD ± 0.61). Nutrient and organic pollution and riparian deforestation explained 53.5% and 9.7% of the variation of benthic macroinvertebrate communities in SSRS, respectively. Given such scenario, additional WWTPs servicing urban developments and improved riparian canopy cover in the SSRS can be both strategic and cost-effective in the initial steps of environmental mitigation in urbanised streams, especially in rapidly developing countries.  相似文献   

12.
Future catchment planning requires a good understanding of the impacts of land use and management, especially with regard to nutrient pollution. A range of readily usable tools, including models, can play a critical role in underpinning robust decision‐making. Modelling tools must articulate our process understanding, make links to a range of catchment characteristics and scales and have the capability to reflect future land‐use management changes. Hence, the model application can play an important part in giving confidence to policy makers that positive outcomes will arise from any proposed land‐use changes. Here, a minimum information requirement (MIR) modelling approach is presented that creates simple, parsimonious models based on more complex physically based models, which makes the model more appropriate to catchment‐scale applications. This paper shows three separate MIR models that represent flow, nitrate losses and phosphorus losses. These models are integrated into a single catchment model (TOPCAT‐NP), which has the advantage that certain model components (such as soil type and flow paths) are shared by all three MIR models. The integrated model can simulate a number of land‐use activities that relate to typical land‐use management practices. The modelling process also gives insight into the seasonal and event nature of nutrient losses exhibited at a range of catchment scales. Three case studies are presented to reflect the range of applicability of the model. The three studies show how different runoff and nutrient loss regimes in different soil/geological and global locations can be simulated using the same model. The first case study models intense agricultural land uses in Denmark (Gjern, 114 km2), the second is an intense agricultural area dominated by high superphosphate applications in Australia (Ellen Brook, 66 km2) and the third is a small research‐scale catchment in the UK (Bollington Hall, 2 km2). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

14.
The world’s largest coral reef ecosystem, the Great Barrier Reef (GBR), continues to be degraded from land-based pollution. Information about the source of pollutants is critical for catchment management to improve GBR water quality. We report here on an 11-year source to sea study of pollutant delivery in runoff from the Fitzroy River Basin (FRB), the largest GBR catchment. An innovative technique that relates land use to pollutant generation is presented. Study results indicate that maximum pollutant concentrations at basin and sub-catchment scales are closely related to the percentage area of croplands receiving heavy rain. However, grazing lands contribute the majority of the long-term average annual load of most common pollutants. Findings suggest improved land management targets, rather than water quality targets should be implemented to reduce GBR pollution. This study provides a substantial contribution to the knowledge base for the targeted management of pollution ‘hot-spots’ to improve GBR water quality.  相似文献   

15.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   

16.
Hypoxia in Manila Bay, Philippines was previously reported during the northeast monsoon (dry season) in February 2010. In this study, four more field surveys of the same 31 stations were conducted in July 2010, August 2011 and 2012 (wet season, southwest monsoon), and February 2011 (dry season, northeast monsoon). During the wet season, bottom hypoxia spread northward towards the coast with dissolved oxygen (DO) ranging from 0.12 to 9.22 mg/L and the bay-wide average reaching 2.10 mg/L. Nutrient levels were elevated, especially near the bottom where dissolved inorganic nitrogen reached 22.3 μM (July 2010) and phosphorus reached 5.61 μM (August 2011). High nutrient concentrations often coincided with low near-bottom DO content. Our work builds on the preliminary assessment of hypoxia in Manila Bay, the importance of repeated temporal studies, and shows hypoxia to prevail significantly during the southwest monsoon (wet season) when increased freshwater discharge caused strong water column stratification.  相似文献   

17.
Fifty streams, located in southern Ontario, Canada, were visited in September 2008 to investigate the effect of varying land use, land cover, and associated resource inputs on water column bacterial abundance (BACT), production (BP), and extracellular enzyme activity and stoichiometry. Principle components analysis was used to summarize landscape data, producing three components (PCs), which explained 79.2% of the variability in the data. The PCs grouped into the following gradients: (PC1) urban land use and continuous annual cropping to wetland-like cover, (PC2) rotational cropping to forest-like cover, and (PC3) increasing rural and agricultural land uses with increasing watershed size. These landscape gradients created imbalanced resource availability. Nutrient resources were more abundant in streams with more intensive anthropogenic land uses, but carbon availability was primarily controlled by the abundance of natural land covers (wetland and wooded areas). BACT, BP, and enzyme activities were positively related primarily to nutrient availability and/or anthropogenic land use (Stepwise R 2 range: 0.33?C0.73). The ratio of ??-glucosidase to alkaline phosphatase activity approached a 1:1 balance with increasing anthropogenic land use, decreased wetland and forest cover, and increased total dissolved nitrogen. The ratio of leucine-aminopeptidase to alkaline phosphatase activity approached 1:1 with both increased dissolved organic carbon and nitrogen. Moreover, enzyme C:N:P ratios moved closer to 1:1:1 with faster water column bacterial turnover times. These results suggest that water column microbial communities are better able to balance resource availability with growth in streams receiving nutrient subsidies from anthropogenic sources and under these conditions when carbon resources increase.  相似文献   

18.
Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify key macro-invertebrate taxa that can be used to monitor changes of the water quality in rivers of the Mara basin as a result of anthropogenic changes.  相似文献   

19.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The water quality of rivers in the eastern part of the Humber Basin, north-eastern England is described from a baseflow survey (11–13 August 2006) of a wide range of water quality determinants, and long-term nutrient records of the Environment Agency of England and Wales (EA). The baseflow survey shows that the rivers are oversaturated with respect to dissolved CO2 and calcite. They are sodium, potassium, lithium, boron, chloride, sulphate and fluoride bearing from a combination of atmospheric, within-catchment, agricultural and sewage effluent sources. Nitrate concentrations are uniform for rivers draining permeable bedrock but decrease for clay drainage areas. Soluble reactive phosphorus (SRP) concentrations are variable across the catchments reflecting the importance and variability of point sources and within-river processing. The EA data show annual oscillations for both NO3 and SRP concentrations. Average NO3 concentrations vary between 3.3 and 18.8 mgN/l and concentrations are low during the summer months. Average SRP concentrations vary between 23 and 1959 μg/l. Highest SRP concentrations generally occur when there is effluent input from sewage treatment works and agricultural point sources (e.g. overflow from slurry tanks, farmyard washings). Despite many of the rivers being nutrient rich, they are generally of good biological quality when point source inputs are not important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号