首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Due to scarcity of local data on stormwater pollution levels and rainfall-runoff generation process, very few attempts have been made towards the management of stormwater in sub-tropical rural catchments. An attempt has been made in the present study to characterize and predict the stormwater runoff characteristics using regression modeling from five rural catchments in north-west India. Stormwater samples and flow data were collected from 75 storm events. Samples were analyzed for pH, total suspended solids (TSS), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total kjeldhal nitrogen (TKN), total phosphorous (TP), nitrate-nitrogen (NO 3 - –N), total coliform count (TC), fecal coliform count (FC), Zn, Cu and Fe. It was found that size of the catchment and the land use practices influenced the stormwater quality even in predominantly rural areas, otherwise thought to be homogeneous. The results obtained were related with the antecedent dry days (ADD) and average rainfall. ADD was found to be positively correlated with pollutant loads whereas average rainfall showed negative correlation. The study highlights the importance of ADD in causing greater mean pollutant concentrations except for TKN, TP and NO 3 - –N. Regression models were developed for the studied catchments to estimate mean pollutant concentrations as a function of rainfall variables. Results revealed that measured pollutant concentrations demonstrated high variability with ADD and average rainfall in small rural catchments, whereas in large catchments, factors like land use, extent of imperviousness etc. resulted in low predictability of measured parameters.  相似文献   

2.
The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay’s coast as well as from Shatt Al-Arab River.  相似文献   

3.
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

5.
Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ~750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (~50,000mg/l), horticulture (~3000mg/l), dryland cropping (~2000mg/l), cotton (~600mg/l) and grazing on native pastures (~300mg/l). The highest median TN concentrations are from horticulture (~32,000μg/l), cotton (~6500μg/l), bananas (~2700μg/l), grazing on modified pastures (~2200μg/l) and sugar (~1700μg/l). For TP it is forestry (~5800μg/l), horticulture (~1500μg/l), bananas (~1400μg/l), dryland cropping (~900mg/l) and grazing on modified pastures (~400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed.  相似文献   

6.
7.
2007-2008年千岛湖营养盐时空分布及其影响因素   总被引:2,自引:2,他引:0  
2007-2008年对千岛湖水体中5个采样点(S1,S3,S4,S8,S9)的总氮、总磷、三态氮、溶解性总磷和可溶性活性磷等进行了不同深度的逐月监测,以研究探讨千岛湖营养盐的时空分布格局.结果表明,两年间总磷、总氮和硝酸盐氮浓度都呈现从上游(S1)至下游(S9)逐渐下降的趋势;2007-2008年汛期(3-7月)位于千岛湖上游新安江干流段的样点S1各种营养盐均为全年最高.但是2007年与2008年营养盐时空分布差异显著.2008年汛期(3-7月),S1的总磷和总氮浓度分别极显著低于和高于2007年同期.相对于2007年,虽然2008年具有更高的温度,但没有增强水体热稳定性.2008年强对流天气一方面通过打破水体热分层和促进水体混合,另一方面通过雨水带来大量的地表营养盐来影响营养盐的分布.汛期高浓度的总磷在1-2个月内平均降低64.4%,最大降低88.6%,显示千岛湖生态系统具有较强的净化能力.分析结果显示千岛湖营养盐时空分布总体格局是由水文、生物以及人类活动等各种因素之间的相互作用所产生的综合效应而形成的,而极端天气能够改变这一格局.  相似文献   

8.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

9.
梯级筑坝对黑河水质时空分布特征的影响   总被引:1,自引:0,他引:1  
为探究梯级大坝建设对河流水质变化规律的影响,将黑河上中游划分为坝上河段、坝下河段及自然河段,于2017年12月-2018年8月选取了24个主要控制断面进行水质调查,并采用多元统计的方法对比分析了不同时空尺度上的水质分布特征.结果表明:黑河上中游水质时空变化的主要影响因子为水温(WT)、pH值、溶解氧(DO)、电导率(EC)、总氮(TN)、总磷(TP)和五日生化需氧量(BOD_5).空间尺度上,WT、EC、BOD_5、高锰酸盐指数(CODMn)、TN等指标具有显著性差异,其中坝上河段受BOD_5、CODMn影响较大,自然河段WT、EC和TN为关键指标,而各个因子对坝下河段水质影响较小.时间尺度上,WT、EC、BOD_5、氨氮与季节变化存在明显相关性,是不同河段水质时间变化的控制因子,且大多数水质因子在非汛期变化最明显.降水、温度、水文条件等季节性影响因素和梯级水库联合运用模式是该区域水质时间差异的主要原因;空间差异主要受祁连、张掖地区外源性污染物排放以及筑坝环境下水动力条件改变而产生的沉积滞留效应和沿程累积效应影响.研究表明,外源性污染源依然是导致水质变差的主要因素,梯级筑坝则是导致水质变差的间接因素.因此控制该区域人类活动所造成的外源性污染源,并针对不同种类污染物的季节变化特征实施合理的水库运行方式是改善水电梯级开发河段水质状况的关键.  相似文献   

10.
For effective water quality management and policy development, spatial variability in the mean concentrations and dynamics of riverine water quality needs to be understood. Using water chemistry (calcium, electrical conductivity, nitrate-nitrite, soluble reactive phosphorus, total nitrogen, total phosphorus and total suspended solids) data for up to 578 locations across the Australian continent, we assessed the impact of climate zones (arid, Mediterranean, temperate, subtropical, tropical) on (i) inter-annual mean concentration and (ii) water chemistry dynamics as represented by constituent export regimes (ratio of the coefficients of variation of concentration and discharge) and export patterns (slope of the concentration-discharge relationship). We found that inter-annual mean concentrations vary significantly by climate zones and that spatial variability in water chemistry generally exceeds temporal variability. However, export regimes and patterns are generally consistent across climate zones. This suggests that intrinsic properties of individual constituents rather than catchment properties determine export regimes and patterns. The spatially consistent water chemistry dynamics highlights the potential to predict riverine water quality across the Australian continent, which can support national riverine water quality management and policy development.  相似文献   

11.
为了解太湖流域上游支流水体的营养状态特征及流域附近土地利用对水质的影响,选取了入湖水系西苕溪的10条主要支流进行了野外采样和实验室研究.研究结果表明,支流总磷(TP)、颗粒磷(PP)、总溶解性磷(TDP)、总氮(TN)、铵态氮(NH+4-N)、硝态氮(NO-3-N)含量季节间差异较大,TP含量范围为0.033~0.205 mg/L,PP含量范围为0.007~0.104 mg/L,TN含量范围为2.014~5.921 mg/L,NH+4-N含量范围0.021~1.659 mg/L,NO-3-N含量范围1.082~3.415mg/L,COD范围为6.5~15.5 mg/L.总体上呈现为枯水期平水期丰水期.部分支流受到不同程度的氮污染.利用水质参数进行聚类分析,可以将10条支流分成4类,其水体营养特征与周围环境相联系.支流营养盐、COD的通量明显受流量控制,表现为丰水期平水期枯水期.土地利用类型的差异是导致其水质变化的主要原因,耕地和居民地主要起源的作用,林地和草地主要起汇的作用.在丰水期和枯水期,对各指标影响最大的土地利用类型为耕地和林地;在平水期,对TP影响最大的是居民地,而对TN影响最大的是林地.  相似文献   

12.
水产养殖清塘过程中的排水是造成周边水环境污染的重要环节,但对此环节中污染物排放特征和影响程度的研究仍相对不足。为有效减少清塘过程的排水对环境的污染,推进水产养殖业绿色发展,本研究选取典型鱼类集约化养殖区,通过高频采样和监测,分析了阶段式排水时混养鱼塘尾水中的悬浮物、有机物和营养盐等指标的浓度变化,明确污染物的排放特征,同时分析受纳水体不同断面的水质变化情况。研究结果表明:总悬浮物浓度(TSS)、高锰酸盐指数(CODMn)、总磷(TP)、总氮(TN)和氨氮(NH3-N)浓度随着持续排水呈上升趋势,在排水末期污染物浓度均快速上升,磷酸盐磷(PO43--P)浓度仅在排水末期骤升,硝态氮(NO3--N)浓度随排水持续下降,亚硝态氮(NO2--N)浓度随排水先上升后下降;根据《淡水池塘养殖水排放要求》二级标准,排水末期TN、TP、TSS浓度超标倍数分别达4.70、6.66、206.90;尾水流量与河流量约以1/200的比例...  相似文献   

13.
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.  相似文献   

14.
We applied graphical methods and multivariate statistics to understand impacts of an unsewered slum catchment on nutrients and hydrochemistry of groundwater in Kampala, Uganda. Data were collected from 56 springs (groundwater), 22 surface water sites and 13 rain samples. Groundwater was acidic and dominated by Na, Cl and NO3. These ions were strongly correlated, indicating pollution originating from wastewater infiltration from on‐site sanitation systems. Results also showed that rain, which was acidic, impacted on groundwater chemistry. Using Q‐mode hierarchical cluster analysis, we identified three distinct water quality groups. The first group had springs dominated by Ca‐Cl‐NO3, low values of electrical conductivity (EC), pH and cations, and relatively high NO3 values. These springs were shown to have originated from the acidic rains because their chemistry closely corresponded to ion concentrations that would occur from rainfall recharge, which was around 3.3 times concentrated by evaporation. The second group had springs dominated by Na‐K‐Cl‐NO3 and Ca‐Cl‐NO3, low pH but with higher values of EC, NO3 and cations. We interpreted these as groundwater affected by both acid rain and infiltration of wastewater from urban areas. The third group had the highest EC values (average of 688 μS/cm), low pH and very high concentrations of NO3 (average of 2.15 mmol/l) and cations. Since these springs were all located in slum areas, we interpreted them as groundwater affected by infiltration of wastewater from poorly sanitized slums areas. Surface water was slightly reducing and eutrophic because of wastewater effluents, but the contribution of groundwater to nutrients in surface water was minimal because o‐PO4 was absent, whereas NO3 was lost by denitification. Our findings suggest that groundwater chemistry in the catchment is strongly influenced by anthropogenic inputs derived from nitrogen‐containing rains and domestic wastewater. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
G. Wotling  Ch. Bouvier 《水文研究》2002,16(9):1745-1756
This study provides an initial characterization of pollution associated with storm runoff in Tahiti. A thousand floodwater samples were collected from three representative catchments and subsequently analysed. The main pollution parameters chosen were total suspended sediment (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN) and Total Phosphorus (TP). First, organic pollution appeared to be related closely to sediment, thus TSS could be used as a global indicator. Next, regression models between an event's TSS load and its hydrological characteristics were used to obtain annual load estimates. Great interannual variability was found to be strongly influenced by the few major floods that occur during the rainy season. Our results also emphasize the importance of the impact of urbanization on solid catchment exportation: from 60 TSS t/km2/year in a natural forested catchment, fluxes reached more than 700 TSS t/km2/year during preparatory urbanization earthworks before stabilizing at 140 TSS t/km2/year in a consolidated urbanized area. Clearly, runoff effects need to be taken into consideration for effective urban planning and for the preservation of the coastal environment in Tahiti. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Lake‐water quality is highly dependent on the landscape characteristics in its respective watershed. In this study, we investigated the relationships between lake‐water quality and landscape composition and configuration within the watershed in the Yangtze River basin of China. Water quality variables, including pH, electrical conductivity (EC), dissolved oxygen (DO), Secchi depth (SD), NO2?, NO3?, NH4+, TN, TP, chemical oxygen demand (CODMn), chlorophyll‐a (Chl‐a), and trophic state index (TSI), were collected from 16 lakes during the period of 2001–2003. Landscape composition (i.e. the percentage of vegetation, agriculture, water, urban, and bare land) and landscape configuration metrics, including number of patches (NP), patch density (PD), largest patch index (LPI), edge density (ED), mean patch area (MPA), mean shape index (MSI), contagion (CONTAG), patch cohesion index (COHESION), Shannon's diversity index (SHDI), and aggregation index (AI), were calculated for each lake's watershed. Results revealed that the percentage of agriculture was negatively related to NO2?, TN, TP, Chl‐a concentrations, and TSI, while the percentage of urban was significantly correlated with EC, NH4+, and CODMn concentrations. Among landscape‐level configuration metrics, only ED showed significant relationships with TN, TP concentrations, and TSI. However, at the class level, the PD, LPI, ED, and AI of agriculture and urban land uses were significantly correlated with two or more water quality variables. This study suggests that, for a given total area, large and clustered agricultural or urban patches in the watershed may have a greater impact on lake‐water quality than small and scattered ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The temporal change in total phosphorus (TP) export from two burnt upland catchments is reported. Following wildfire in January 2003, two burnt forested headwater catchments (136 and 244 ha) in the East Kiewa valley, Victoria, were instrumented to measure discharge, turbidity and to collect stream water samples. In addition, samplers were positioned in the stream bed at the outlet of each catchment to continuously sample material transported along the bed of the stream. Approximately, every 2 weeks, the material collected by the stream bed samplers was weighed and sub‐sampled. The percentage of coarse (>1 and < 5 mm in diameter) mineral (including soil aggregates) and organic matter was determined and then analysed for TP. Between the first and third years after fire, sampled coarse matter and associated TP loads decreased by an average of 53% and 62%, respectively. Over the 3‐year study, the amount of coarse matter exported during winter/spring decreased considerably, whereas export rates during summer/autumn remained relatively constant. Coarse matter exports were estimated to be approaching pre‐fire levels after 3–4 years. Results on total suspended solids (TSS) TP and total dissolved phosphorus (TDP) from a parallel study are incorporated to explore TP partitioning. TP exported with TSS dominated the total TP export loads, with coarse matter TP and TDP each contributing approximately 10% over the study period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Riparian vegetation can trap sediment and nutrients sourced from hillslopes and reduce stream bank erosion. This study presents results from a 10-year stream monitoring program (1991–2000), in a 6 km2 agricultural catchment near Albany, Western Australia. After 6 years, a 1.7 km stream reach was fenced, planted with eucalyptus species and managed independently from the adjacent paddocks. Streamflow, nutrient and sediment concentration data were collected at the downstream end of the fenced riparian area, so there are data for before and after improved riparian management. Suspended sediment (SS) concentrations fell dramatically following improved riparian management; the median event mean concentration (EMC) dropped from 147 to 9.9 mg l−1. Maximum SS concentrations dropped by an order of magnitude. As a result, sediment exports from the catchment decreased following improved riparian management, from over 100 to less than 10 kg ha−1 yr−1. Observations suggest that this was the result of reduced bank erosion and increased channel stability. Riparian management had limited impact on total phosphorus (TP) concentrations or loads, but contributed to a change in phosphorus (P) form. Before improved riparian management, around half of the P was transported attached to sediment, but after, the median filterable reactive P (FRP) to TP ratio increased to 0.75. In addition, the median FRP EMC increased by 60% and the raw median FRP concentration increased from 0.18 to 0.35 mg l−1. These results suggest that there was a change in the dominant P form, from TP to FRP. Changes in total nitrogen (TN) following improved riparian management were less clear. There were reductions in TN concentrations at high flows, but little change in the loads or EMC. This study demonstrates the benefits of riparian management in reducing stream bank erosion, but suggests that in catchments with sandy, low P sorption soils, there may be limitations on the effectiveness of riparian buffers for reducing P and N exports.  相似文献   

20.
This study analysed monthly physico-chemical and biological data collected from 18 marine monitoring stations in Victoria Harbour and its vicinity in Hong Kong, from 1988 to 1996. Cluster analysis based on all water quality parameters measured shows that the 18 monitoring stations can be grouped into four clusters: Cluster I consists of stations located in the Harbour proper; Cluster II consists of stations located west of the Harbour and along the Rambler Channel; Cluster III consists of stations located east of the Harbour near Junk Bay and Cluster IV consists of stations located west of the Harbour and near the Ma Wan, Kap Shui Mun and Western Fairways. Factor analysis shows high positive loadings for nutrients in the first two factors of the four clusters. This suggests that effluents from the 11 outfalls of sewage screening plants influence the water quality of Victoria Harbour and its vicinity. Other factors such as storm water runoff, marine traffic, construction and industrial activities and the Pearl River discharges also appear to play an important role in determining local water quality. Five stations located along an east–west transect across the Harbour were selected for trend analysis. The three stations located in the Harbour exhibit an increasing trend for temperature and levels of total phosphorus (TP), ortho-phosphate phosphorous (PO4-P) and faecal bacteria and a decreasing trend for pH and levels of total nitrogen (TN), total kjeldahl-nitrogen (TKN), 5-day biochemical oxygen demand (BOD5) and chlorophyll a. For the station located east of the Harbour, an increasing trend is observed for levels of TP, PO4-P, but no decreasing trend in TN and TKN is detected. For the station located west of the Harbour, no decreasing trend in TN, TKN and chlorophyll a is observed. Changes in levels of phosphorus and nitrogen in Victoria Harbour and the immediate vicinity have led to significant increases in the ratios of Total Silica (TSi) to TN, as well as a decrease in TN to TP and TSi to TP in most stations. Results of the present study show that Victoria Harbour and its immediate vicinity remain polluted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号