首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   

2.
石油物探技术的进展   总被引:2,自引:2,他引:2  
概括地论述了石油物探技术在80年代的新进展.与70年代相比,80年代石油地球物理勘探技术取得了前所未有的成就;同时,也存在不少亟待解决的问题,且难度相当大.这些问题正是90年代所面临的研究课题.  相似文献   

3.
本文系统地总结近年来中国石油物探技术的进步和成果,详细分析了当前中国陆上石油工业的发展趋势及主要物探技木需求,提出了下一步物探技术发展的主要方向。  相似文献   

4.
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.  相似文献   

5.
We compare the performances of four stochastic optimisation methods using four analytic objective functions and two highly non‐linear geophysical optimisation problems: one‐dimensional elastic full‐waveform inversion and residual static computation. The four methods we consider, namely, adaptive simulated annealing, genetic algorithm, neighbourhood algorithm, and particle swarm optimisation, are frequently employed for solving geophysical inverse problems. Because geophysical optimisations typically involve many unknown model parameters, we are particularly interested in comparing the performances of these stochastic methods as the number of unknown parameters increases. The four analytic functions we choose simulate common types of objective functions encountered in solving geophysical optimisations: a convex function, two multi‐minima functions that differ in the distribution of minima, and a nearly flat function. Similar to the analytic tests, the two seismic optimisation problems we analyse are characterised by very different objective functions. The first problem is a one‐dimensional elastic full‐waveform inversion, which is strongly ill‐conditioned and exhibits a nearly flat objective function, with a valley of minima extended along the density direction. The second problem is the residual static computation, which is characterised by a multi‐minima objective function produced by the so‐called cycle‐skipping phenomenon. According to the tests on the analytic functions and on the seismic data, genetic algorithm generally displays the best scaling with the number of parameters. It encounters problems only in the case of irregular distribution of minima, that is, when the global minimum is at the border of the search space and a number of important local minima are distant from the global minimum. The adaptive simulated annealing method is often the best‐performing method for low‐dimensional model spaces, but its performance worsens as the number of unknowns increases. The particle swarm optimisation is effective in finding the global minimum in the case of low‐dimensional model spaces with few local minima or in the case of a narrow flat valley. Finally, the neighbourhood algorithm method is competitive with the other methods only for low‐dimensional model spaces; its performance sensibly worsens in the case of multi‐minima objective functions.  相似文献   

6.
This paper discusses and addresses two questions in carbonate reservoir characterization: how to characterize pore‐type distribution quantitatively from well observations and seismic data based on geologic understanding of the reservoir and what geological implications stand behind the pore‐type distribution in carbonate reservoirs. To answer these questions, three geophysical pore types (reference pores, stiff pores and cracks) are defined to represent the average elastic effective properties of complex pore structures. The variability of elastic properties in carbonates can be quantified using a rock physics scheme associated with different volume fractions of geophysical pore types. We also explore the likely geological processes in carbonates based on the proposed rock physics template. The pore‐type inversion result from well log data fits well with the pore geometry revealed by a FMI log and core information. Furthermore, the S‐wave prediction based on the pore‐type inversion result also shows better agreement than the Greensberg‐Castagna relationship, suggesting the potential of this rock physics scheme to characterize the porosity heterogeneity in carbonate reservoirs. We also apply an inversion technique to quantitatively map the geophysical pore‐type distribution from a 2D seismic data set in a carbonate reservoir offshore Brazil. The spatial distributions of the geophysical pore type contain clues about the geological history that overprinted these rocks. Therefore, we analyse how the likely geological processes redistribute pore space of the reservoir rock from the initial depositional porosity and in turn how they impact the reservoir quality.  相似文献   

7.
中国水文、工程、环境物探的回顾和展望   总被引:1,自引:0,他引:1       下载免费PDF全文
回顾了我国水文、工程和环境物探近50年的历史,简介了我国水文、工程、环境物探发展的四个阶段.重点论述了我国能源、交通和城市工程物探在电力、铁路、水利建设以及海洋平台工程建设等领域内取得的重大成就;介绍了水资源和地热物探在农业、工业和城市建设中的重要贡献;分析了我国水文、工程、环境物探的技术进步;最后提出了发展方向.  相似文献   

8.
The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ~1 km2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ~200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.  相似文献   

9.
Practical decisions are often made based on the subsurface images obtained by inverting geophysical data. Therefore it is important to understand the resolution of the image, which is a function of several factors, including the underlying geophysical experiment, noise in the data, prior information and the ability to model the physics appropriately. An important step towards interpreting the image is to quantify how much of the solution is required to satisfy the data observations and how much exists solely due to the prior information used to stabilize the solution. A procedure to identify the regions that are not constrained by the data would help when interpreting the image. For linear inverse problems this procedure is well established, but for non‐linear problems the procedure is more complicated. In this paper we compare two different approaches to resolution analysis of geophysical images: the region of data influence index and a resolution spread computed using point spread functions. The region of data influence method is a fully non‐linear approach, while the point spread function analysis is a linearized approach. An approximate relationship between the region of data influence and the resolution matrix is derived, which suggests that the region of data influence is connected with the rows of the resolution matrix. The point‐spread‐function spread measure is connected with the columns of the resolution matrix, and therefore the point‐spread‐function spread and the region of data influence are fundamentally different resolution measures. From a practical point of view, if two different approaches indicate similar interpretations on post‐inversion images, the confidence in the interpretation is enhanced. We demonstrate the use of the two approaches on a linear synthetic example and a non‐linear synthetic example, and apply them to a non‐linear electromagnetic field data example.  相似文献   

10.
神经网络在油气评价和预测方面的研究现状   总被引:9,自引:1,他引:9  
人工神经网络是近年来迅速发展的信息处理技术之一,其模式分类能力和复杂函数逼近能力,正被广泛应用于油气勘探信息的定性和定量评价中,本文对目前神经网络在油气评价和预测中的研究现状作一简要综述。  相似文献   

11.
Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site‐specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ~500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time‐domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.  相似文献   

12.
海洋天然气水合物的地球物理探测高新技术   总被引:27,自引:6,他引:21  
海洋天然气水合物是一种潜在的巨大能源,在资源环境、灾害方面处于非常重要的地位。发展海洋天然气水合物的地球物理探测高新技术一蕴藏量估算技术、深水区高分辩率地震技术、井中地球物理技术、海洋电滋法探测技术,准确了解天然气水合物的分布与蕴藏量,对我国海洋天然气水合物产业的建立具有关键作用。  相似文献   

13.
中国的快速工业化发展和经济腾飞必须有大量金属矿产资源的支撑,在共享世界资源的同时,其根本出路在于立足本土.因此提出第二深度空间(500~2000 m)金属矿产资源的找矿勘探新理念.通过对国内外金属矿产资源地球物理勘探发展的概况分析和研究提出:①金属矿产资源的集聚和分布受控于地壳内部物质与能量的交换和其深层动力过程;②在地壳内部第二深度空间存在着丰富的矿产资源,包括大型和超大型矿床;③必须充分发挥高精度地球物理探测方法的效能,并进行综合技术集成.  相似文献   

14.
We investigate a novel way to introduce resistivity models deriving from airborne electromagnetic surveys into regional geological modelling. Standard geometrical geological modelling can be strengthened using geophysical data. Here, we propose to extract information contained in a resistivity model in the form of local slopes that constrain the modelling of geological interfaces. The proposed method is illustrated on an airborne electromagnetic survey conducted in the region of Courtenay in France. First, a resistivity contrast corresponding to the clay/chalk interface was interpreted confronting the electromagnetic soundings to boreholes. Slopes were then sampled on this geophysical model and jointly interpolated with the clay/chalk interface documented in boreholes using an implicit 3D potential‐field method. In order to evaluate this new joint geophysical–geological model, its accuracy was compared with that of both pure geological and pure geophysical models for various borehole configurations. The proposed joint modelling yields the most accurate clay/chalk interface whatever the number and location of boreholes taken into account for modelling and validation. Compared with standard geological modelling, the approach introduces in between boreholes geometrical information derived from geophysical results. Compared with conventional resistivity interpretation of the geophysical model, it reduces drift effects and honours the boreholes. The method therefore improves what is commonly obtained with geological or geophysical data separately, making it very attractive for robust 3D geological modelling of the subsurface.  相似文献   

15.
Sharm El-Sheikh waters were suddenly hit by hydrocarbon spills which created a serious threat to the prosperous tourism industry in and around the city. Analysis of soil samples, water samples, and seabed samples collected in and around the contaminated bay area showed anomalous levels of hydrocarbons. An integrated geophysical investigation, using magnetic, gravity, and ground penetrating radar geophysical tools, was conducted in the headland overlooking the contaminated bay in order to delineate the possible subsurface source of contamination. The results of the geophysical investigations revealed three underground manmade reinforced concrete tanks and a complicated network of buried steel pipes in addition to other unidentified buried objects. The depths and dimensions of the discovered objects were determined. Geophysical investigations also revealed the presence of a north–south oblique slip fault running through the eastern part of the studied area. Excavations, conducted later on, confirmed the presence of one of the tanks delineated by the geophysical surveys.  相似文献   

16.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling‐based approaches are expensive and provide low‐density spatial and temporal information. Time‐lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation‐related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling‐based approaches for assessing emplacement and monitoring biostimulation‐based remediation. Field studies demonstrating the ability of time‐lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment‐related geochemical properties. Crosshole radar zero‐offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time‐lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost‐effective surface‐based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.  相似文献   

17.
A robust metric of data misfit such as the ?1‐norm is required for geophysical parameter estimation when the data are contaminated by erratic noise. Recently, the iteratively re‐weighted and refined least‐squares algorithm was introduced for efficient solution of geophysical inverse problems in the presence of additive Gaussian noise in the data. We extend the algorithm in two practically important directions to make it applicable to data with non‐Gaussian noise and to make its regularisation parameter tuning more efficient and automatic. The regularisation parameter in iteratively reweighted and refined least‐squares algorithm varies with iteration, allowing the efficient solution of constrained problems. A technique is proposed based on the secant method for root finding to concentrate on finding a solution that satisfies the constraint, either fitting to a target misfit (if a bound on the noise is available) or having a target size (if a bound on the solution is available). This technique leads to an automatic update of the regularisation parameter at each and every iteration. We further propose a simple and efficient scheme that tunes the regularisation parameter without requiring target bounds. This is of great importance for the field data inversion where there is no information about the size of the noise and the solution. Numerical examples from non‐stationary seismic deconvolution and velocity‐stack inversion show that the proposed algorithm is efficient, stable, and robust and outperforms the conventional and state‐of‐the‐art methods.  相似文献   

18.
A multi‐method research design based on terrestrial laser scanning, GIS, geophysical prospecting (electrical resistivity tomography, refraction seismics) and sedimentology is applied for the first time to investigate enclosed karst depressions in an integrated way. Fusing multi‐resolution surface and subsurface geodata provides profound insights into the formation, geometry and geomorphologic processes of dolines. The studied landforms, which are located in the Dikti Mountains of East Crete, are shown to be filled by loose sediments of thicknesses of up to 30 m that mainly consist of fine‐grained material overlying solid bedrock at depths below 35 to 45 m. By combining subsurface observations with geomorphometric calculations, local doline genesis can be traced back to initial collapse of fractured bedrock followed by subsequent infilling with colluvials. In order to define crucial methodological requirements and guidelines for data fusion, both the impact of different elevation models and the influence of data resolution are assessed. Surface volumes of depressions derived by the digital surface model are 7–21% higher than the results obtained from the terrain model due to vegetation. Similarly, estimates of infill volume calculated on the basis of geophysical outcomes and elevation data differ by up to 13%. Calculations of the landforms' current volumes (i.e. total surface and subsurface volume), however, are fairly insensitive to raster resolution. Hence, the distinct geomorphologic properties of landforms (e.g. shape, terrain roughness, slope inclination) substantially determine the geomorphometric analysis of both surface and subsurface data. As shown by the findings, data fusion to integrate digital terrain, geophysical and sedimentological datasets of varied resolutions benefits geomorphologic studies and helps provide a comprehensive image of landforms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
中国油气资源企盼二次创业   总被引:18,自引:37,他引:18  
中国石油天然气工业在过去50年的第一次创业中,主要是在新生年代陆相沉积盆地中获得丰富的油气资源,当前在严峻的形势下,国家必须进行油气资源的第二次创业,第二次创业要从突破前新生代(中生代、古生代、甚至更早)海相碳酸盐岩地层中的油气开始,解放思想,提高认识并大力发展地球物理勘探技术,努力解决复杂地质体成象问题,探索海相油气资源,使这次创业得以成功。  相似文献   

20.
We consider two sources of geology‐related uncertainty in making predictions of the steady‐state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号