首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
直流电阻率法2.5维正演的外推瀑布式多重网格法   总被引:6,自引:1,他引:5       下载免费PDF全文
引入外推瀑布式多重网格法(EXCMG)求解2.5维直流电阻率有限元计算形成的大型稀疏线性方程组,结合基于地址矩阵的压缩存贮方式以及最优化离散波数,使得2.5维电阻率正演程序的计算速度大大提高而内存需求大大减小.研究结果表明:EXCMG法的收敛速度与网格尺寸无关,计算速度明显优于不完全Cholesky共轭梯度(ICCG)...  相似文献   

2.
利用共轭梯度算法的电阻率三维有限元正演   总被引:19,自引:6,他引:19       下载免费PDF全文
引入对称超松弛预条件共轭梯度(SSOR PCG)迭代算法求解电阻率三维有限元计算形成的大型线性方程组,并有机结合系数矩阵的稀疏存储模式,使得三维有限元正演计算的速度大大提高而内存需求则大大减少. 该算法可方便地应用于求三维异常电位,在保持快速计算的基础上,正演计算的精度显著提高.  相似文献   

3.
三维频率域随钻电磁波测井数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
在现有的普通计算机的内存和运算速度的条件下,三维频率域电磁波测井数值模拟非常困难,为了研究随钻仪器在复杂测井环境中的响应规律,从Maxwell电磁响应方程出发,针对大斜度井井眼和侵入剖面的几何特点,采用新的网格划分方法,并应用基于交错网格的有限差分得到了三维频率域电磁响应差分计算格式,采用改进的ICCG(不完全乔尔斯基共轭梯度)方法,对一维变带宽存储的大型复稀疏矩阵进行了求解,得到了随钻电磁波测井响应.计算结果表明:一维变带宽存储方法很好地解决了大型稀疏矩阵的存储问题;改进的ICCG方法得到的结果真实可靠并大大提高了求解效率;随钻电阻率曲线随着井斜角度增大会出现“极化角”,低阻侵入会使“极化角”弱化;相位电阻率曲线受围岩影响较小,受侵入影响较大.  相似文献   

4.
三维地形直流电阻率有限元法模拟   总被引:8,自引:7,他引:8       下载免费PDF全文
基于稳定电流场的基本方程、三维区域满足的边值问题以及相应的变分问题,研究了三维起伏地形条件下电阻率的有限单元数值模拟算法. 离散积分区域时,以三棱柱为最小研究单元,推导了含有地形特征信息的三线性插值型函数以及单元刚度矩阵. 采用变带宽、一维数组方式只存储稀疏刚度矩阵中非零元素,能够节约内存. 利用Cholesky分解法只分解一次大型稀疏矩阵,通过回代可以求出方程组的全部解,当求解有多个供电点的测深问题时可以缩短计算时间. 模型计算表明,在水平层状介质模型上,三维计算结果与解析解或二维数值解十分吻合,计算精度满足误差要求. 在二维山脊上的二极剖面或三维山谷上的中间梯度剖面上,其三维计算结果与相应模型的土槽实验结果或边界元法计算结果也非常接近.  相似文献   

5.
复杂二维/三维大地电磁的有限单元法正演模拟策略   总被引:1,自引:0,他引:1  
复杂二维和三维大地电磁模型的正演数值模拟具有一定的挑战性。对于复杂的二维和三维大地电磁正演问题,我们采用有限单元法进行求解。有限单元法最后形成一个线性方程组,系数矩阵是大型稀疏的带状对称复系数矩阵,并且其条件数远大于1,为严重病态矩阵,求解其对应方程组会遇到很多困难。不完全LU分解处理的Bi-CGSTAB迭代方法可用于该线性方程组的求解,并且具有速度快、精度高和稳定性好等优点;为了模拟无穷远边界及满足计算机的内存需求,在保证计算精度的情况下设计了非均匀网格剖分;在程序编制中,只存储有限元系数矩阵的非零元素,大大减少了正演计算的时间。通过对二维和三维模型电磁响应的计算,验证了算法的正确性。  相似文献   

6.
三维反演解释是电磁法勘探发展的重要趋势,而如何提高三维反演的可靠性、稳定性和计算效率是算法开发者们目前的研究重点.本文实现了一种频率域可控源电磁(CSEM)三维反演算法.其中正演基于拟态有限体积法离散化,利用直接矩阵分解技术来求解大型线性系统方程,不仅准确、稳定,而且特别有利于含有大量发射场源位置的CSEM勘探情况;对目标函数的最优化采用高斯牛顿法(GN),具有近似二次的收敛性;使用预条件共轭梯度法(PCG)求解每次GN迭代所得到的法方程,避免了显式求解和存储灵敏度矩阵,减小了计算量.以上这些方法的结合应用,使得本文的三维反演算法准确、稳定且高效.通过陆地和海洋CSEM勘探场景中的典型理论模型的反演测试,验证了本文算法的有效性.  相似文献   

7.
随着重力和重力梯度测量技术的日趋成熟,基于重力和重力梯度数据的反演技术得到了广泛关注.针对反演多解性严重、计算效率低和内存消耗大等难点问题,本文开展了三维重力和重力梯度数据的联合反演研究,该方法结合重力和重力梯度两种数据,将L0范数正则化项加入到目标函数中,并在数据空间下采用改进的共轭梯度算法求解反演最优化问题.同时,本文摒弃了依赖先验信息的深度加权函数,引入了自适应模型积分灵敏度矩阵,用来克服因重力和重力梯度数据核函数随深度增加而衰减引起的趋肤效应问题.为了提高反演计算效率,本文又推导出基于规则网格化的重力和重力梯度快速正演计算方法.模拟试算表明,改进的共轭梯度法可以降低反演的迭代次数,提高反演的收敛速度;自适应模型积分灵敏度矩阵,可以有效解决趋肤效应,提高反演纵向分辨能力;数据空间和改进的共轭梯度算法结合,可以更好地降低反演求解方程的维度,避免存储灵敏度矩阵,有效地降低反演计算时间和内存消耗量.野外实例表明,该算法可以在普通计算机下快速地获得地下密度分布模型,表现出较强的稳定性和适用性.  相似文献   

8.
为了快速模拟具有较宽频带的三维频域航空电磁响应,本文利用交错网格的有限差分方法,依据麦克斯韦方程组的离散形式推导得出关于空间电场分布的大型稀疏复线性代数方程组,再将方程实虚部分离得到关于实数的大型稀疏线性代数方程组,利用稳定的双共轭梯度法求解方程组.结果表明该方法不仅可以提高方程求解速度,而且保证方程在较低频率下解的收敛性,满足航空电磁法宽频带的要求.然后根据航空电磁法本身特点,提出迭代初值优化和双重网格迭代的方法,该方法可以提高计算速度50%左右.  相似文献   

9.
基于光滑约束的最小二乘法是三维电阻率反演的主要方法,但该方法在某些情况下存在着多解性较强的问题,且普遍耗时较长,严重制约了三维反演方法的推广与发展.为改善上述问题,将表征模型参数变化范围的不等式约束作为先验信息引入最小二乘线性反演方法中,有效地改善了反演结果的精度,降低了反演的多解性问题.为了解决耗时较长的问题,基于预条件共轭梯度(PCG)算法和Cholesky分解法的特点提出了一套优化三维电阻率反演计算效率的计算方案.在该方案中,Cholesky分解法被用来求解敏感度矩阵计算中的多个点源场的正演问题,Cholesky分解法只需对总体系数矩阵进行一次分解,然后对不同的右端向量进行回代即可.将预条件共轭梯度法引入到三维电阻率反演方程的求解中,将雅可比迭代中的对角阵作为预处理矩阵,其具有求逆方便、无需内存空间的特点,有效地加快了收敛速度.对合成数据以及实测数据的反演算例表明,借助不等式约束和反演效率优化方案,最小二乘反演方法可得到较为精确的反演结果,有效地提高了反演计算效率,具有良好的推广前景.  相似文献   

10.
三维感应测井响应计算的交错网格有限差分法   总被引:20,自引:13,他引:20       下载免费PDF全文
应用交错网格有限差分法计算三维复杂环境中的感应测井响应. 其中,利用Krylov子空间不变性求解离散得到的大型稀疏复对称线性方程组. 在构造Krylov子空间时使用其系数矩阵的伪逆以改善迭代的收敛性. 迭代中,使用不完全Cholesky分解共轭梯度法求解4个三维Poisson方程以得到新的Lanczos向量. 通常迭代不超过20次可得到理想结果. 另外,提出一种新的物质平均公式以计算电导率平均值,可保证电流守恒.  相似文献   

11.
An accurate and efficient 3D finite-difference (FD) forward algorithm for DC resistivity modelling is developed. In general, the most time-consuming part of FD calculation is to solve large sets of linear equations: Ax = b , where A is a large sparse band symmetric matrix. The direct method using complete Choleski decomposition is quite slow and requires much more computer storage. We have introduced a row-indexed sparse storage mode to store the coefficient matrix A and an incomplete Choleski conjugate-gradient (ICCG) method to solve the large linear systems. By taking advantage of the matrix symmetry and sparsity, the ICCG method converges much more quickly and requires much less computer storage. It takes approximately 15 s on a 533 MHz Pentium computer for a grid with 46 020 nodes, which is approximately 700 times faster than the direct method and 2.5 times faster than the symmetric successive over-relaxation (SSOR) conjugate-gradient method. Compared with 3D finite-element resistivity modelling with the improved ICCG solver, our algorithm is more efficient in terms of number of iterations and computer time. In addition, we solve for the secondary potential in 3D DC resistivity modelling by a simple manipulation of the FD equations. Two numerical examples of a two-layered model and a vertical contact show that the method can achieve much higher accuracy than solving for the total potential directly with the same grid nodes. In addition, a 3D cubic body is simulated, for which the dipole–dipole apparent resistivities agree well with the results obtained with the finite-element and integral-equation methods. In conclusion, the combination of several techniques provides a rapid and accurate 3D FD forward modelling method which is fundamental to 3D resistivity inversion.  相似文献   

12.
三维泊松方程数值模拟的多重网格方法   总被引:5,自引:1,他引:4       下载免费PDF全文
本文简要介绍了多重网格方法的基本思想和原理,然后应用多重网格(MG)方法求解三维泊松方程,网格尺度从17×17×17逐次增加至257×257×257,并与不完全Chelesky共轭梯度法(ICCG)、Gauss直接解法进行比较,结果表明,MG方法计算速度明显优于ICCG、Gauss方法,对于129×129×129网格的三维数值模拟费时43s,比ICCG法快7倍,而对于257×257×257超大型网格的三维数值模拟也仅需412s.  相似文献   

13.
在频率域弹性波有限元正演方程的基础上,依据匹配函数(也就是观测数据和正演数据残差的二次范数)最小的准则,用矩阵压缩存储与LU分解技术来存储和求解频率域正演方程中的大型稀疏复系数矩阵、用可调阻尼因子的Levenberg Marquard方法求解反演方程组,直接求取地下介质的弹性波速度,导出了频率域弹性波有限元最小二乘反演算法. 为了利用地下地质体的分布规律,减少反演所求的未知数个数,本文又提出了规则地质块体建模方法引入到反演中来. 经数值模型验证,在噪声干扰很大(噪声达到50髎)或初始模型与真实模型相差很大的情况下,反演也能取得很满意的效果,证明本方法具有很好的抗噪性与“强壮性”.  相似文献   

14.
二维频率空间域的数值模拟方法具有以下的优势:多炮模拟时,计算成本比时间域方法低;无累计误差;在地震反演中处理多震源模拟时,只需要有限的几个频率就可以得到好的反演结果.差分离散化形成的稀疏系数矩阵,需要求解一个巨大规模的线性方程组,最大瓶颈是需要海量的计算机内存,导致计算量庞大.本文在前人研究的基础上,采用嵌套剖分网格排序法,极大限度减少对计算机内存的需求,从而减少了计算量.针对弹性波数值模拟的特征,提出二维频率空间域弹性波多炮模拟的快速计算流程.数值模拟试验证明使用嵌套剖分排序法的弹性波多炮数值模拟比压缩存储法具有节省存储量、计算效率高等优势,为后续的二维频率空间域弹性波全波形反演奠定了很好的基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号