首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Abstract

Monitoring snow parameters (e.g. snow-cover area, snow water equivalent) is challenging work. Because of its natural physical properties, snow strongly affects the evolution of weather on a daily basis and climate on a longer time scale. In this paper, the snow recognition product generated from the MSG-SEVIRI images within the framework of the Hydrological Satellite Facility (HSAF) Project of EUMETSAT is presented. Validation of the snow recognition product H10 was done for the snow season (from 1 January to 31 March) of the water year 2009. The MOD10A1 and MOD10C2 snow products were also used in the validation studies. Ground truth of the products was obtained by using 1890 snow depth observations from 20 meteorological stations, which are mainly located in mountainous areas and are distributed across the eastern part of Turkey. The possibility of 37% cloud cover reduction was obtained by merging 15-min observations from MSG-SEVIRI as opposed to using only one daily observation from MODIS. The coarse spatial resolution of the H10 product gave higher commission errors compared to the MOD10A1 product. Snow depletion curves obtained from the HSAF snow recognition product were compared with those derived from the MODIS 8-day snow cover product. The preliminary results show that the HSAF snow recognition product, taking advantage of using high temporal frequency measurement with spectral information required for snow mapping, significantly improves the mapping of regional snow-cover extent over mountainous areas.

Citation Surer, S. and Akyurek, Z., 2012. Evaluating the utility of the EUMETSAT HSAF snow recognition product over mountainous areas of eastern Turkey. Hydrological Sciences Journal, 57 (8), 1–11.  相似文献   

2.
To improve spring runoff forecasts from subalpine catchments, detailed spatial simulations of the snow cover in this landscape is obligatory. For more than 30 years, the Swiss Federal Research Institute WSL has been conducting extensive snow cover observations in the subalpine watershed Alptal (central Switzerland). This paper summarizes the conclusions from past snow studies in the Alptal valley and presents an analysis of 14 snow courses located at different exposures and altitudes, partly in open areas and partly in forest. The long‐term performance of a physically based numerical snow–vegetation–atmosphere model (COUP) was tested with these snow‐course measurements. One single parameter set with meteorological input variables corrected to the prevailing local conditions resulted in a convincing snow water equivalent (SWE) simulation at most sites and for various winters with a wide range of snow conditions. The snow interception approach used in this study was able to explain the forest effect on the SWE as observed on paired snow courses. Finally, we demonstrated for a meadow and a forest site that a successful simulation of the snowpack yields appropriate melt rates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Eleven years of daily 500 m gridded Terra Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD10A1) snow cover fraction (SCF) data are evaluated in terms of snow presence detection in Colorado and Washington states. The SCF detection validation study is performed using in‐situ measurements and expressed in terms of snow and land detection and misclassification frequencies. A major aspect addressed in this study involves the shifting of pixel values in time due to sensor viewing angles and gridding artifacts of MODIS sensor products. To account for this error, 500 m gridded pixels are grouped and aggregated to different‐sized areas to incorporate neighboring pixel information. With pixel aggregation, both the probability of detection (POD) and the false alarm ratios increase for almost all cases. Of the false negative (FN) and false positive values (referred to as the total error when combined), FN estimates dominate most of the total error and are greatly reduced with aggregation. The greatest POD increases and total error reductions occur with going from a single 500 m pixel to 3×3‐pixel averaged areas. Since the MODIS SCF algorithm was developed under ideal conditions, SCF detection is also evaluated for varying conditions of vegetation, elevation, cloud cover and air temperature. Finally, using a direct insertion data assimilation approach, pixel averaged MODIS SCF observations are shown to improve modeled snowpack conditions over the single pixel observations due to the smoothing of more error‐prone observations and more accurately snow‐classified pixels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
T. Jonas  C. Marty  J. Magnusson   《Journal of Hydrology》2009,378(1-2):161-167
The snow water equivalent (SWE) characterizes the hydrological significance of snow cover. However, measuring SWE is time-consuming, thus alternative methods of determining SWE may be useful. SWE can be calculated from snow depth if the bulk snow density is known. Thus, a reliable estimation method of snow densities could (a) potentially save a lot of effort by, at least partly, sampling snow depth instead of SWE, and would (b) allow snow hydrological evaluations, when only snow depth data are available. To generate a useful parameterization of the bulk density a large dataset was analyzed covering snow densities and depths measured biweekly over five decades at 37 sites throughout the Swiss Alps. Four factors were identified to affect the bulk snow density: season, snow depth, site altitude, and site location. These factors constitute a convenient set of input variables for a snow density model developed in this study. The accuracy of estimating SWE using our model is shown to be equivalent to the variability of repeated SWE measurements at one site. The technique may therefore allow a more efficient but indirect sampling of the SWE without necessarily affecting the data quality.  相似文献   

5.
A method for using remotely sensed snow cover information in updating a hydrological model is developed, based on Bayes' theorem. A snow cover mass balance model structure adapted to such use of satellite data is specified, using a parametric snow depletion curve in each spatial unit to describe the subunit variability in snow storage. The snow depletion curve relates the accumulated melt depth to snow‐covered area, accumulated snowmelt runoff volume, and remaining snow water equivalent. The parametric formulation enables updating of the complete snow depletion curve, including mass balance, by satellite data on snow coverage. Each spatial unit (i.e. grid cell) in the model maintains a specific depletion curve state that is updated independently. The uncertainty associated with the variables involved is formulated in terms of a joint distribution, from which the joint expectancy (mean value) represents the model state. The Bayesian updating modifies the prior (pre‐update) joint distribution into a posterior, and the posterior joint expectancy replaces the prior as the current model state. Three updating experiments are run in a 2400 km2 mountainous region in Jotunheimen, central Norway (61°N, 9°E) using two Landsat 7 ETM+ images separately and together. At 1 km grid scale in this alpine terrain, three parameters are needed in the snow depletion curve. Despite the small amount of measured information compared with the dimensionality of the updated parameter vector, updating reduces uncertainty substantially for some state variables and parameters. Parameter adjustments resulting from using each image separately differ, but are positively correlated. For all variables, uncertainty reduction is larger with two images used in conjunction than with any single image. Where the observation is in strong conflict with the prior estimate, increased uncertainty may occur, indicating that prior uncertainty may have been underestimated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Accurate snow accumulation and melt simulations are crucial for understanding and predicting hydrological dynamics in mountainous settings. As snow models require temporally varying meteorological inputs, time resolution of these inputs is likely to play an important role on the model accuracy. Because meteorological data at a fine temporal resolution (~1 hr) are generally not available in many snow‐dominated settings, it is important to evaluate the role of meteorological inputs temporal resolution on the performance of process‐based snow models. The objective of this work is to assess the loss in model accuracy with temporal resolution of meteorological inputs, for a range of climatic conditions and topographic elevations. To this end, a process‐based snow model was run using 1‐, 3‐, and 6‐hourly inputs for wet, average, and dry years over Boise River Basin (6,963 km2), which spans rain dominated (≤1,400 m), rain–snow transition (>1,400 and ≤1,900 m), snow dominated below tree line (>1,900 and ≤2,400 m), and above tree line (>2,400 m) elevations. The results show that sensitivity of the model accuracy to the inputs time step generally decreases with increasing elevation from rain dominated to snow dominated above tree line. Using longer than hourly inputs causes substantial underestimation of snow cover area (SCA) and snow water equivalent (SWE) in rain‐dominated and rain–snow transition elevations, due to the precipitation phase mischaracterization. In snow‐dominated elevations, the melt rate is underestimated due to errors in estimation of net snow cover energy input. In addition, the errors in SCA and SWE estimates generally decrease toward years with low snow mass, that is, dry years. The results indicate significant increases in errors in estimates of SCA and SWE as the temporal resolution of meteorological inputs becomes coarser than an hour. However, use of 3‐hourly inputs can provide accurate estimates at snow‐dominated elevations. The study underscores the need to record meteorological variables at an hourly time step for accurate process‐based snow modelling.  相似文献   

7.
Seasonal snow cover in mountainous regions will affect local climate and hydrology. In this study, we assessed the role of altitude in determining the relative importance of temperature and precipitation in snow cover variability in the Central Tianshan Mountains. The results show that: (a) in the study area, temperature has a greater influence on snow cover than precipitation during most of the time period studied and in most altitudes. (b) In the high elevation area, there is a threshold altitude of 3,900 ± 400 m, below which temperature is negatively correlated whereas precipitation is positively correlated to snow cover, and above which the situation is the opposite. Besides, this threshold altitude decreases from snow accumulated period to snow stable period and then increases from snowmelt period to snow‐free period. (c) Below 2,000 m, there is another threshold altitude of 1,400 ± 100 m during the snow stable period, below (above) which precipitation (temperature) is the main driver of snow cover.  相似文献   

8.
As demand for water continues to escalate in the western Unites States, so does the need for accurate monitoring of the snowpack in mountainous areas. In this study, we describe a simple methodology for generating gridded‐estimates of snow water equivalency (SWE) using both surface observations of SWE and remotely sensed estimates of snow‐covered area (SCA). Multiple regression was used to quantify the relationship between physiographic variables (elevation, slope, aspect, clear‐sky solar radiation, etc.) and SWE as measured at a number of sites in a mountainous basin in south‐central Idaho (Big Wood River Basin). The elevation of the snowline, obtained from the SCA estimates, was used to constrain the predicted SWE values. The results from the analysis are encouraging and compare well to those found in previous studies, which often utilized more sophisticated spatial interpolation techniques. Cross‐validation results indicate that the spatial interpolation method produces accurate SWE estimates [mean R2 = 0·82, mean mean absolute error (MAE) = 4·34 cm, mean root mean squared error (RMSE) = 5·29 cm]. The basin examined in this study is typical of many mid‐elevation mountainous basins throughout the western United States, in terms of the distribution of topographic variables, as well as the number and characteristics of sites at which the necessary ground data are available. Thus, there is high potential for this methodology to be successfully applied to other mountainous basins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The spatial variability of snow water equivalent (SWE) can exert a strong influence on the timing and magnitude of snowmelt delivery to a watershed. Therefore, the representation of sub-grid or sub-watershed snow variability in hydrologic models is important for accurately simulating snowmelt dynamics and runoff response. The U.S. Geological Survey National Hydrologic Model infrastructure with the precipitation-runoff modelling system (NHM-PRMS) represents the sub-grid variability of SWE with snow depletion curves (SDCs), which relate snow-covered area to watershed-mean SWE during the snowmelt period. The main objective of this research was to evaluate the sensitivity of simulated runoff to SDC representation within the NHM-PRMS across the continental United States (CONUS). SDCs for the model experiment were derived assuming a range of SWE coefficient of variation values and a lognormal probability distribution function. The NHM-PRMS was simulated at a daily time step for each SDC over a 14-year period. Results highlight that increasing the sub-grid snow variability (by changing the SDC) resulted in a consistently slower snowmelt rate and longer snowmelt duration when averaged across the hydrologic response unit scale. Simulated runoff was also found to be sensitive to SDC representation, as decreases in simulated snowmelt rate by 1 mm day−1 resulted in decreases in runoff ratio by 1.8% on average in snow-dominated regions of the CONUS. Simulated decreases in runoff associated with slower snowmelt rates were approximately inversely proportional to increases in simulated evapotranspiration. High snow persistence and peak SWE:annual precipitation combined with a water-limited dryness index was associated with the greatest runoff sensitivity to changing snowmelt. Results from this study highlight the importance of carefully parameterizing SDCs for hydrologic modelling. Furthermore, improving model representation of snowmelt input variability and its relation to runoff generation processes is shown to be an important consideration for future modelling applications.  相似文献   

10.
Tundra snow cover is important to monitor as it influences local, regional, and global‐scale surface water balance, energy fluxes, as well as ecosystem and permafrost dynamics. Observations are already showing a decrease in spring snow cover duration at high latitudes, but the impact of changing winter season temperature and precipitation on variables such as snow water equivalent (SWE) is less clear. A multi‐year project was initiated in 2004 with the objective to quantify tundra snow cover properties over multiple years at a scale appropriate for comparison with satellite passive microwave remote sensing data and regional climate and hydrological models. Data collected over seven late winter field campaigns (2004 to 2010) show the patterns of snow depth and SWE are strongly influenced by terrain characteristics. Despite the spatial heterogeneity of snow cover, several inter‐annual consistencies were identified. A regional average density of 0.293 g/cm3 was derived and shown to have little difference with individual site densities when deriving SWE from snow depth measurements. The inter‐annual patterns of SWE show that despite variability in meteorological forcing, there were many consistent ratios between the SWE on flat tundra and the SWE on lakes, plateaus, and slopes. A summary of representative inter‐annual snow stratigraphy from different terrain categories is also presented. © 2013 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

12.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

14.
The spatial and temporal distribution of snow cover extent (SCE) and snow water equivalent (SWE) play vital roles in the hydrology of northern watersheds. We apply remotely sensed Special Sensor Microwave Imager (SSM/I) data from 1988 to 2007 to explore the relationships between snow distribution and the hydroclimatology of the Mackenzie River Basin (MRB) of Canada and its major sub-basins. The Environment Canada (EC) algorithm is adopted to retrieve the SWE from SSM/I data. Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow cover extent products (MOD10A2) are used to estimate the different thresholds of retrieved SWE from SSM/I to classify the land cover as snow or no snow for various sub-basins in the MRB. The sub-basins have varying topography and hence different thresholds that range from 10 mm to 30 mm SWE. The accuracy of snow cover mapping based on the combination of several thresholds for the different sub-basins reaches ≈ 90%. The northern basins are found to have stronger linear relationships between the date on which snow cover fraction (SCF) reaches 50% or when SWE reaches 50% and mean air temperatures, than the southern basins. Correlation coefficients between SCF, SWE, and hydroclimatological variables show the new SCF products from SSM/I perform better than SWE from SSM/I to analyze the relationships with the regional hydroclimatology. Statistical models relating SCF and SWE to runoff indicate that the SCF and SWE from EC algorithms are able to predict the discharge in the early snow ablation seasons in northern watersheds.  相似文献   

15.
Snow is Earth's most climatically sensitive land cover type. Traditional snow metrics may not be able to adequately capture the changing nature of snow cover. For example, April 1 snow water equivalent (SWE) has been an effective index for streamflow forecasting, but it cannot express the effects of midwinter melt events, now expected in warming snow climates, nor can we assume that station-based measurements will be representative of snow conditions in future decades. Remote sensing and climate model data provide capacity for a suite of multi-use snow metrics from local to global scales. Such indicators need to be simple enough to “tell the story” of snowpack changes over space and time, but not overly simplistic or overly complicated in their interpretation. We describe a suite of spatially explicit, multi-temporal snow metrics based on global satellite data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and downscaled climate model output for the U.S. We describe and provide examples for Snow Cover Frequency (SCF), Snow Disappearance Date (SDD), At-Risk Snow (ARS), and Frequency of a Warm Winter (FWW). Using these retrospective and prospective snow metrics, we assess the current and future snow-related conditions in three hydroclimatically different U.S. watersheds: the Truckee, Colorado Headwaters, and Upper Connecticut. In the two western U.S. watersheds, SCF and SDD show greater sensitivity to annual differences in snow cover compared with data from the ground-based Snow Telemetry (SNOTEL) network. The eastern U.S. watershed does not have a ground-based network of data, so these MODIS-derived metrics provide uniquely valuable snow information. The ARS and FWW metrics show that the Truckee Watershed is highly vulnerable to conversion from snowfall to rainfall (ARS) and midwinter melt events (FWW) throughout the seasonal snow zone. In comparison, the Colorado Headwaters and Upper Connecticut Watersheds are colder and much less vulnerable through mid- and late-century.  相似文献   

16.
Abstract

The dominant source of streamflow in many mountainous watersheds is snowmelt recharge through shallow groundwater systems. The hydrological response of these watersheds is controlled by basin structure and spatially distributed snowmelt. The purpose of this series of two papers is to simulate spatially varying snowmelt and groundwater response in a small mountainous watershed. This paper examines the spatially and temporally variable snowmelt to be used as input to the groundwater flow modelling described in the second paper. Snowmelt simulation by the Simultaneous Heat and Water (SHAW) model (a detailed process model of the interrelated heat, water and solute movement through vegetative cover, snow, residue and soil) was validated by applying the model to two years of data at three sites ranging from shallow transient snow cover on a west-facing slope to a deep snow drift on a north-facing slope. The simulated energy balances for several melt periods are presented. Snow depth, density, and the magnitude and timing of snow cover outflow were simulated well for all sites.  相似文献   

17.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Four satellite‐based snow products are evaluated over the Tibetan Plateau for the 2007–2010 snow seasons. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow cover daily L3 Global 500‐m grid products (MOD10A1 and MYD10A1), the National Oceanic and Atmospheric Administration Interactive Multisensor Snow and Ice Mapping System (IMS) daily Northern Hemisphere snow cover product and the Advanced Microwave Scanning Radiometer – Earth Observing System Daily Snow Water Equivalent were validated against Thematic Mapper (TM) snow cover maps of Landsat‐5 and meteorological station snow depth observations. The overall accuracy of MOD10A1, MYD10A1 and IMS is higher than 91% against stations observations and than 79% against Landsat TM images. In general, the daily MODIS snow cover products show better performance than the multisensor IMS product. However, the IMS snow cover product is suitable for larger scale (~4km) analysis and applications, with the advantage over MODIS to allow for mitigation for cloud cover. The accuracy of the three products decreases with decreasing snow depth. Overestimation errors are most common over forested regions; the IMS and Advanced Microwave Scanning Radiometer – Earth Observing System Snow Water Equivalent products also show poorer performance that the MODIS products over grassland. By identifying weaknesses in the satellite products, this study provides a focus for the improvement of snow products over the Tibetan plateau. The quantitative evaluation of the products proposed here can also be used to assess their relative weight in data assimilation, against other data sources, such as modelling and in situ measurement networks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The Vakhsh and Pyandj rivers, main tributaries of the Amu Darya River in the mountainous region of the Pamir Alay, play an important role in the water resources of the Aral Sea basin (Central Asia). In this region, the glaciers and snow cover significantly influence the water cycle and flow regime, which could be strongly modified by climate change. The present study, part of a project funded by the European Commission, analyses the hydrological situation in six benchmark basins covering areas of between 1800 and 8400 km2, essentially located in Tajikistan, with a variety of topographical situations, precipitation amounts and glacierized areas. Four types of parameter are discussed: temperature, glaciation, snow cover and river flows. The study is based mainly on a long-time series that ended in the 1990s (with the collapse of the Soviet Union) and on field observations and data collection. In addition, a short, more recent period (May 2000 to May 2002) was examined to better understand the role of snow cover, using scarce monitored data and satellite information. The results confirm the overall homogeneous trend of temperature increase in the mountain range and its impacts on the surface water regime. Concerning the snow cover, significant differences are noted in the location, elevation, orientation and morphology of snow cover in the respective basins. The changes in the river flow regime are regulated by the combination of the snow cover dynamics and the increasing trend of the air temperature.
Editor Z.W. Kundzewicz  相似文献   

20.
Estimates of sediment yield are essential in water resources analysis, modelling and engineering, in investigations of continental denudation rates, and in studies of drainage basin response to changes in climate and land use. The availability of high resolution, global environmental datasets offers an opportunity to examine the relationships between specific sediment yield (SYsp) and drainage basin attributes in a geographical information system (GIS) environment. This study examines SYsp at 14 long‐term gauging stations within the upper Indus River basin. Twenty‐nine environmental variables were derived from global datasets, the majority with a 1 × 1 km resolution. The SYsp ranges from 194 to 1302 t km?2 yr?1 for sub‐basins ranging from 567 to 212 447 km2. The high degree of scatter in SYsp is greatly reduced when the stations are divided into three groups: upper, glacierized sub‐basins; lower, monsoon sub‐basins; and the main Indus River. Percentage snow/ice cover (LCs) emerges as the single major land cover control for SYsp in the high mountainous upper Indus River basin. A regression model with percentage snow/ice cover (LCs) as the single independent variable explains 73·4% of the variance in SYsp for the whole Indus basin. A combination of percentage snow/ice cover (LCs), relief and climate variables explains 98·5% of the variance for the upper, glacierized sub‐basins. For the lower monsoon region, a regression model with only mean annual precipitation (P) explains 99·4% of the variance. Along the main Indus River, a regression model including just basin relief (R) explains 92·4% of the variance in SYsp. Based on the R2adj and P‐value statistics, the variables used are capable of explaining the majority of variance in the upper Indus River basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号