首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Characterization of snow is critical for understanding Earth’s water and energy cycles. Maps of snow from MODIS have seen growing use in investigations of climate, hydrology, and glaciology, but the lack of rigorous validation of different snow mapping methods compromises these studies. We examine three widely used MODIS snow products: the “binary” (i.e., snow yes/no) global snow maps that were among the initial MODIS standard products; a more recent standard MODIS fractional snow product; and another fractional snow product, MODSCAG, based on spectral mixture analysis. We compare them to maps of snow obtained from Landsat ETM+ data, whose 30 m spatial resolution provides nearly 300 samples within a 500 m MODIS nadir pixel. The assessment uses 172 images spanning a range of snow and vegetation conditions, including the Colorado Rocky Mountains, the Upper Rio Grande, California’s Sierra Nevada, and the Nepal Himalaya. MOD10A1 binary and fractional fail to retrieve snow in the transitional periods during accumulation and melt while MODSCAG consistently maintains its retrieval ability during these periods. Averaged over all regions, the RMSE for MOD10A1 fractional is 0.23, whereas the MODSCAG RMSE is 0.10. MODSCAG performs the most consistently through accumulation, mid-winter and melt, with median differences ranging from −0.16 to 0.04 while differences for MOD10A1 fractional range from −0.34 to 0.35. MODSCAG maintains its performance over all land cover classes and throughout a larger range of land surface properties. Characterizing snow cover by spectral mixing is more accurate than empirical methods based on the normalized difference snow index, both for identifying where snow is and is not and for estimating the fractional snow cover within a sensor’s instantaneous field-of-view. Determining the fractional value is particularly important during spring and summer melt in mountainous terrain, where large variations in snow, vegetation and soil occur over small distances and when snow can melt rapidly.  相似文献   

2.
Four satellite‐based snow products are evaluated over the Tibetan Plateau for the 2007–2010 snow seasons. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow cover daily L3 Global 500‐m grid products (MOD10A1 and MYD10A1), the National Oceanic and Atmospheric Administration Interactive Multisensor Snow and Ice Mapping System (IMS) daily Northern Hemisphere snow cover product and the Advanced Microwave Scanning Radiometer – Earth Observing System Daily Snow Water Equivalent were validated against Thematic Mapper (TM) snow cover maps of Landsat‐5 and meteorological station snow depth observations. The overall accuracy of MOD10A1, MYD10A1 and IMS is higher than 91% against stations observations and than 79% against Landsat TM images. In general, the daily MODIS snow cover products show better performance than the multisensor IMS product. However, the IMS snow cover product is suitable for larger scale (~4km) analysis and applications, with the advantage over MODIS to allow for mitigation for cloud cover. The accuracy of the three products decreases with decreasing snow depth. Overestimation errors are most common over forested regions; the IMS and Advanced Microwave Scanning Radiometer – Earth Observing System Snow Water Equivalent products also show poorer performance that the MODIS products over grassland. By identifying weaknesses in the satellite products, this study provides a focus for the improvement of snow products over the Tibetan plateau. The quantitative evaluation of the products proposed here can also be used to assess their relative weight in data assimilation, against other data sources, such as modelling and in situ measurement networks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Accuracy assessment of the MODIS snow products   总被引:2,自引:0,他引:2  
A suite of Moderate‐Resolution Imaging Spectroradiometer (MODIS) snow products at various spatial and temporal resolutions from the Terra satellite has been available since February 2000. Standard products include daily and 8‐day composite 500 m resolution swath and tile products (which include fractional snow cover (FSC) and snow albedo), and 0·05° resolution products on a climate‐modelling grid (CMG) (which also include FSC). These snow products (from Collection 4 (C4) reprocessing) are mature and most have been validated to varying degrees and are available to order through the National Snow and Ice Data Center. The overall absolute accuracy of the well‐studied 500 m resolution swath (MOD10_L2) and daily tile (MOD10A1) products is ~93%, but varies by land‐cover type and snow condition. The most frequent errors are due to snow/cloud discrimination problems, however, improvements in the MODIS cloud mask, an input product, have occurred in ‘Collection 5’ reprocessing. Detection of very thin snow (<1 cm thick) can also be problematic. Validation of MOD10_L2 and MOD10A1 applies to all higher‐level products because all the higher‐level products are all created from these products. The composited products may have larger errors due, in part, to errors propagated from daily products. Recently, new products have been developed. A fractional snow cover algorithm for the 500 m resolution products was developed, and is part of the C5 daily swath and tile products; a monthly CMG snow product at 0·05° resolution and a daily 0·25° resolution CMG snow product are also now available. Similar, but not identical products are also produced from the MODIS on the Aqua satellite, launched in May 2002, but the accuracy of those products has not yet been assessed in detail. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

4.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Terrain variables are the main factors affecting the spatial distribution of snow cover. This paper aims to find a relationship between snow-cover area (SCA) and topographic variables (elevation, slope and aspect), using MODIS Terra data (MOD09A1) in parts of the Chenab basin, western Himalayas. The inter-annual variability of SCA% for each month has been analysed for the years 2000 to 2011. The analysis reveals that mean annual SCA value was maximum (37.89%) in 2005 and minimum (32.07%) in 2001. The slope classes with maximum and minimum SCA% are 5°–10° and 30°–35°, respectively. Among the 16 aspect classes, the ESE-facing slope evinces maximum SCA%. During the snow accumulation period, the expanse at 3600–4300 m elevation, and in the depletion period, 4300–5000 m elevation are found to have maximum rate of change in SCA% per 100 m rise in elevation, i.e. 3.37% and 3.67%, respectively.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

6.
Land surface albedo plays an important role in the radiation budget and global climate models. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) provide 16‐day albedo product with 500‐m resolution every 8 days (MCD43A3). Some in‐situ albedo measurements were used as the true surface albedo values to validate the MCD43A3 product. As the 16‐day MODIS albedo retrievals do not include snow observations when there is ephemeral snow on the ground surface in a 16‐day period, comparisons between MCD43A3 and 16 day averages of field data do not agree well. Another reason is that the MODIS cannot detect the snow when the area is covered by clouds. The Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) data are not affected by weather conditions and are a good supplement for optical remote sensing in cloudy weather. When the surface is covered by ephemeral snow, the AMSR‐E data can be used as the additional information to retrieve the snow albedo. In this study, we developed an improved method by using the MODIS products and the AMSR‐E snow water equivalent (SWE) product to improve the MCD43A3 short‐time snow‐covered albedo estimation. The MODIS daily snow products MOD10A1 and MYD10A1 both provide snow and cloud information from observations. In our study region, we updated the MODIS daily snow product by combining MOD10A1 and MYD10A1. Then, the product was combined with the AMSR‐E SWE product to generate new daily snow‐cover and SWE products at a spatial resolution of 500 m. New SWE datasets were integrated into the Noah Land Surface Model snow model to calculate the albedo above a snow surface, and these values were then utilized to improve the MODIS 16‐day albedo product. After comparison of the results with in‐situ albedo measurements, we found that the new corrected 16‐day albedo can show the albedo changes during the short snowfall season. For example, from January 25 to March 14, 2007 at the BJ site, the albedo retrieved from snow‐free observations does not indicate the albedo changes affected by snow; the improved albedo conforms well to the in‐situ measurements. The correlation coefficient of the original MODIS albedo and the in‐situ albedo is 0.42 during the ephemeral snow season, but the correlation coefficient of the improved MODIS albedo and the in‐situ albedo is 0.64. It is concluded that the new method is capable of capturing the snow information from AMSR‐E SWE to improve the short‐time snow‐covered albedo estimation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Daily swath MODIS Terra Collection 6 fractional snow cover (MOD10_L2) estimates were validated with two‐day Landsat TM/ETM + snow‐covered area estimates across central Idaho and southwestern Montana, USA. Snow cover maps during spring snowmelt for 2000, 2001, 2002, 2003, 2005, 2007, and 2009 were compared between MODIS Terra and Landsat TM/ETM + using least‐squared regression. Strong spatial and temporal map agreement was found between MODIS Terra fractional snow cover and Landsat TM/ETM + snow‐covered area, although map disagreement was observed for two validation dates. High‐altitude cirrus cloud contamination during low snow conditions as well as late season transient snowfall resulted in map disagreement. MODIS Terra's spatial resolution limits retrieval of thin‐patchy snow cover, especially during partially cloudy conditions. Landsat's image acquisition frequency can introduce difficulty when discriminating between transient and resident mountain snow cover. Furthermore, transient snowfall later in the snowmelt season, which is a stochastic accumulation event that does not usually persist beyond the daily timescale, will skew decadal snow‐covered area variability if bi‐monthly climate data record development is the objective. As a quality control step, ground‐based daily snow telemetry snow‐water‐equivalent measurements can be used to verify transient snowfall events. Users of daily MODIS Terra fractional snow products should be aware that local solar illumination and sensor viewing geometry might influence fractional snow cover estimation in mountainous terrain. Cross‐sensor interoperability has been confirmed between MODIS Terra and Landsat TM/ETM + when mapping snow from the visible/infrared spectrum. This relationship is strong and supports operational multi‐sensor snow cover mapping, specifically climate data record development to expand cryosphere, climate, and hydrological science applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Remote sensing is considered the most effective tool for estimating evapotranspiration (ET) over large spatial scales. Global terrestrial ET estimates over vegetated land surfaces are now operationally produced at 1-km spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the MOD16 algorithm. To evaluate the accuracy of this product, ground-based measurements of energy fluxes obtained from eddy covariance sites installed in tropical biomes and from a hydrological model (MGB-IPH) were used to validate MOD16 products at local and regional scales. We examined the accuracy of the MOD16 algorithm at two sites in the Rio Grande basin, Brazil, one characterized by a sugar-cane plantation (USE), the other covered by natural savannah vegetation (PDG) for the year 2001. Inter-comparison between 8-day average MOD16 ET estimates and flux tower measurements yielded correlations of 0.78 to 0.81, with root mean square errors (RMSE) of 0.78 and 0.46 mm d-1, at PDG and USE, respectively. At the PDG site, the annual ET estimate derived by the MOD16 algorithm was 19% higher than the measured amount. For the average annual ET at the basin-wide scale (over an area of 145 000 km2), MOD16 estimates were 21% lower than those from the hydrological model MGB-IPH. Misclassification of land use and land cover was identified as the largest contributor to the error from the MOD16 algorithm. These estimates improve significantly when results are integrated into monthly or annual time intervals, suggesting that the algorithm has a potential for spatial and temporal monitoring of the ET process, continuously and systematically, through the use of remote sensing data.
Editor D. Koutsoyiannis; Associate editor T. Wagener

Citation Ruhoff, A.L., Paz, A.R., Aragao, L.E.O.C., Mu, Q., Malhi, Y., Collischonn, W., Rocha, H.R., and Running, S.W., 2013. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58 (8), 1658–1676.  相似文献   

9.
Eleven years of daily 500 m gridded Terra Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD10A1) snow cover fraction (SCF) data are evaluated in terms of snow presence detection in Colorado and Washington states. The SCF detection validation study is performed using in‐situ measurements and expressed in terms of snow and land detection and misclassification frequencies. A major aspect addressed in this study involves the shifting of pixel values in time due to sensor viewing angles and gridding artifacts of MODIS sensor products. To account for this error, 500 m gridded pixels are grouped and aggregated to different‐sized areas to incorporate neighboring pixel information. With pixel aggregation, both the probability of detection (POD) and the false alarm ratios increase for almost all cases. Of the false negative (FN) and false positive values (referred to as the total error when combined), FN estimates dominate most of the total error and are greatly reduced with aggregation. The greatest POD increases and total error reductions occur with going from a single 500 m pixel to 3×3‐pixel averaged areas. Since the MODIS SCF algorithm was developed under ideal conditions, SCF detection is also evaluated for varying conditions of vegetation, elevation, cloud cover and air temperature. Finally, using a direct insertion data assimilation approach, pixel averaged MODIS SCF observations are shown to improve modeled snowpack conditions over the single pixel observations due to the smoothing of more error‐prone observations and more accurately snow‐classified pixels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Taking northern Xinjiang, China, as an example, this study first compares the standard MODIS Terra and Aqua snow cover classifications, and then compares the accuracy of the standard MODIS daily and 8‐day snow cover products with the new daily and multi‐day snow cover combination of MODIS Terra and Aqua observations using in situ measurements. Under clear sky in both products, the agreement of land classification from MODIS Terra and Aqua daily and 8‐day snow cover products is close to 100% for a entire water year. In contrast, the agreement of snow classification from MODIS Terra and Aqua is high only in the winter months, decreasing in the rest of the period. The high agreement mainly concentrates in land or snow‐dominated areas, and major disagreements take place in the transitions zones from snow to land. The disagreement (mainly snow–land) in the 8‐day products is higher than that in the daily products. In addition, both MODIS Terra and Aqua cloud masks tend to map more areas in the transition zones as cloud. Under clear sky conditions, the three daily products have similar accuracy of snow and land classification, and the 8‐day standard products and the multi‐day combination product also have similar accuracy of snow and land classification. This further suggests that the algorithm in the combination of Terra and Aqua snow cover products is valid. Moreover, in the actual weather/cloud conditions, the combination products from Terra and Aqua reduce cloud blockage and improve snow classification accuracy against either MODIS Terra or Aqua (51% against 44% and 34% for daily and 92% against 87% and 78% for 8‐day, respectively), although Terra snow product (daily or 8‐day) has slightly better accuracy than the Aqua snow product. The new combination products can provide better mapping of spatiotemporal variation of snow cover/glacier and for snow‐melting modeling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Many of the Japanese regions subject to seasonal snow cover are characterized by low elevations and relatively high winter temperatures. A small change in winter temperatures could render many of these areas susceptible to snow cover change and consequently affect water resources management. This paper describes a climatological approach combined with an AGCM output to identify the regions and main river basins most sensitive to snow cover change in the case of climate change in Japan. It was found that a 1°C rise in temperature during the winter season could increase the snow-free area of Japan by 6%. The snow cover of Tohoku region and Mogami and Agano river basins was found to be the most sensitive to climate change. The AGCM output for a future scenario presents a reduction in total snowfall and an earlier peak in snowmelt for all regions.

Editor Z.W. Kundzewicz

Citation Chaffe, P.L.B, Takara, K, Yamashiki, Y, Apip, Luo, P., Silva, R.V., and Nakakita, E., 2013. Mapping of Japanese areas susceptible to snow cover change. Hydrological Sciences Journal, 58 (8), 1718–1728.  相似文献   

12.
Remote sensing is an important source of snow‐cover extent for input into the Snowmelt Runoff Model (SRM) and other snowmelt models. Since February 2000, daily global snow‐cover maps have been produced from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS). The usefulness of this snow‐cover product for streamflow prediction is assessed by comparing SRM simulated streamflow using the MODIS snow‐cover product with streamflow simulated using snow maps from the National Operational Hydrologic Remote Sensing Center (NOHRSC). Simulations were conducted for two tributary watersheds of the Upper Rio Grande basin during the 2001 snowmelt season using representative SRM parameter values. Snow depletion curves developed from MODIS and NOHRSC snow maps were generally comparable in both watersheds: satisfactory streamflow simulations were obtained using both snow‐cover products in larger watershed (volume difference: MODIS, 2·6%; NOHRSC, 14·0%) and less satisfactory streamflow simulations in smaller watershed (volume difference: MODIS, −33·1%; NOHRSC, −18·6%). The snow water equivalent (SWE) on 1 April in the third zone of each basin was computed using the modified depletion curve produced by the SRM and was compared with in situ SWE measured at Snowpack Telemetry sites located in the third zone of each basin. The SRM‐calculated SWEs using both snow products agree with the measured SWEs in both watersheds. Based on these results, the MODIS snow‐cover product appears to be of sufficient quality for streamflow prediction using the SRM in the snowmelt‐dominated basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The Irtysh River is the main water resource of Eastern Kazakhstan and its upper basin is severely affected by spring floods each year, primarily as a result of snowmelt. Knowledge of the large-scale processes that influence the timing of these snow-induced floods is currently lacking, but critical for the management of water resources in the area. In this study, we evaluated the variability in winter–spring snow cover in five major sub-basins of the Upper Irtysh basin between 2000 and 2017 as a possible explanatory factor of spring flood events, assessing the time of peak snow cover depletion rate and snow cover disappearance from the moderate-resolution imaging spectroradiometer (MODIS) MOD10A2 data set. We found that on average, peak snow cover retreat occurs between 22 March and 14 April depending on the basin, with large interannual variations but no clear trend over the MODIS period, while our comparative analysis of longer-term snow cover extent from the National Oceanic and Atmospheric Administration Climate Data Record data set suggests a shift to earlier snow cover disappearance since the 1970s. In contrast, the annual peak snow cover depletion rate displays a weak increasing trend over the study period and exceeded 5,900 km2/day in 2017. The timing of snow disappearance in spring shows significant correlations of up to 0.82 for the largest basin with winter indices of the Arctic Oscillation (AO) over the region. The primary driver is the impact of the large-scale pressure anomalies upon the mean spring (MAM) air temperatures and resultant timing of snow cover disappearance, particularly at elevations 500–2,000 m above sea level. This suggests a lagged effect of this atmospheric circulation pattern in spring snow cover retreat. The winter AO index could therefore be incorporated into long-term runoff forecasts for the Irtysh. Our approach is easily transferable to other similar catchments and could support flood management strategies in Kazakhstan and other countries.  相似文献   

14.
Snow cover depletion curves are required for several water management applications of snow hydrology and are often difficult to obtain automatically using optical remote sensing data owing to both frequent cloud cover and temporary snow cover. This study develops a methodology to produce accurate snow cover depletion curves automatically using high temporal resolution optical remote sensing data (e.g. Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS or National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) by snow cover change trajectory analysis. The method consists of four major steps. The first is to reclassify both cloud‐obscured land and snow into more distinct subclasses and to determine their snow cover status (seasonal snow cover or not) based on the snow cover change trajectories over the whole snowmelt season. The second step is to derive rules based on the analysis of snow cover change trajectories. These rules are subsequently used to determine for a given date, the snow cover status of a pixel based on snow cover maps from the beginning of the snowmelt season to that given date. The third step is to apply a decision‐tree‐like processing flow based on these rules to determine the snow cover status of a pixel for a given date and to create daily seasonal snow cover maps. The final step is to produce snow cover depletion curves using these maps. A case study using this method based on Terra MODIS snow cover map products (MOD10A1) was conducted in the lower and middle reaches of the Kaidu River Watershed (19 000 km2) in the Chinese Tien Shan, Xinjiang Uygur Autonomous Region, China. High resolution remote sensing data (charge coupled device (CCD) camera data with 19·5 m resolution of the China and Brazil Environmental and Resources Satellite (CBERS) data (19·5 m resolution), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 15 m resolution of the Terra) were used to validate the results. The study shows that the seasonal snow cover classification was consistent with that determined using a high spatial resolution dataset, with an accuracy of 87–91%. The snow cover depletion curves clearly reflected the impact of the variation of temperature and the appearance of temporary snow cover on seasonal snow cover. The findings from this case study suggest that the approach is successful in generating accurate snow cover depletion curves automatically under conditions of frequent cloud cover and temporary snow cover using high temporal resolution optical remote sensing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The Vakhsh and Pyandj rivers, main tributaries of the Amu Darya River in the mountainous region of the Pamir Alay, play an important role in the water resources of the Aral Sea basin (Central Asia). In this region, the glaciers and snow cover significantly influence the water cycle and flow regime, which could be strongly modified by climate change. The present study, part of a project funded by the European Commission, analyses the hydrological situation in six benchmark basins covering areas of between 1800 and 8400 km2, essentially located in Tajikistan, with a variety of topographical situations, precipitation amounts and glacierized areas. Four types of parameter are discussed: temperature, glaciation, snow cover and river flows. The study is based mainly on a long-time series that ended in the 1990s (with the collapse of the Soviet Union) and on field observations and data collection. In addition, a short, more recent period (May 2000 to May 2002) was examined to better understand the role of snow cover, using scarce monitored data and satellite information. The results confirm the overall homogeneous trend of temperature increase in the mountain range and its impacts on the surface water regime. Concerning the snow cover, significant differences are noted in the location, elevation, orientation and morphology of snow cover in the respective basins. The changes in the river flow regime are regulated by the combination of the snow cover dynamics and the increasing trend of the air temperature.
Editor Z.W. Kundzewicz  相似文献   

16.
The spatial and temporal distribution of snow cover extent (SCE) and snow water equivalent (SWE) play vital roles in the hydrology of northern watersheds. We apply remotely sensed Special Sensor Microwave Imager (SSM/I) data from 1988 to 2007 to explore the relationships between snow distribution and the hydroclimatology of the Mackenzie River Basin (MRB) of Canada and its major sub-basins. The Environment Canada (EC) algorithm is adopted to retrieve the SWE from SSM/I data. Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow cover extent products (MOD10A2) are used to estimate the different thresholds of retrieved SWE from SSM/I to classify the land cover as snow or no snow for various sub-basins in the MRB. The sub-basins have varying topography and hence different thresholds that range from 10 mm to 30 mm SWE. The accuracy of snow cover mapping based on the combination of several thresholds for the different sub-basins reaches ≈ 90%. The northern basins are found to have stronger linear relationships between the date on which snow cover fraction (SCF) reaches 50% or when SWE reaches 50% and mean air temperatures, than the southern basins. Correlation coefficients between SCF, SWE, and hydroclimatological variables show the new SCF products from SSM/I perform better than SWE from SSM/I to analyze the relationships with the regional hydroclimatology. Statistical models relating SCF and SWE to runoff indicate that the SCF and SWE from EC algorithms are able to predict the discharge in the early snow ablation seasons in northern watersheds.  相似文献   

17.
Accurate forecasting of snow properties is important for effective water resources management, especially in mountainous areas like the western United States. Current model-based forecasting approaches are limited by model biases and input data uncertainties. Remote sensing offers an opportunity for observation of snow properties, like areal extent and water equivalent, over larger areas. Data assimilation provides a framework for optimally merging information from remotely sensed observations and hydrologic model predictions. An ensemble Kalman filter (EnKF) was used to assimilate remotely sensed snow observations into the variable infiltration capacity (VIC) macroscale hydrologic model over the Snake River basin. The snow cover extent (SCE) product from the moderate resolution imaging spectroradiometer (MODIS) flown on the NASA Terra satellite was used to update VIC snow water equivalent (SWE), for a period of four consecutive winters (1999–2003). A simple snow depletion curve model was used for the necessary SWE–SCE inversion. The results showed that the EnKF is an effective and operationally feasible solution; the filter successfully updated model SCE predictions to better agree with the MODIS observations and ground surface measurements. Comparisons of the VIC SWE estimates following updating with surface SWE observations (from the NRCS SNOTEL network) indicated that the filter performance was a modest improvement over the open-loop (un-updated) simulations. This improvement was more evident for lower to middle elevations, and during snowmelt, while during accumulation the filter and open-loop estimates were very close on average. Subsequently, a preliminary assessment of the potential for assimilating the SWE product from the advanced microwave scanning radiometer (AMSR-E, flown on board the NASA Aqua satellite) was conducted. The results were not encouraging, and appeared to reflect large errors in the AMSR-E SWE product, which were also apparent in comparisons with SNOTEL data.  相似文献   

18.
The Moderate Resolution Imaging Spectroradiometer (MODIS), flown on board the Terra Earth Observing System (EOS) platform launched in December 1999, produces a snow‐covered area (SCA) product. This product is expected to be of better quality than SCA products based on operational satellites (notably GOES and AVHRR), due both to improved spectral resolution and higher spatial resolution of the MODIS instrument. The gridded MODIS SCA product was compared with the SCA product produced and distributed by the National Weather Service National Operational Hydrologic Remote Sensing Center (NOHRSC) for 46 selected days over the Columbia River basin and 32 days over the Missouri River basin during winter and spring of 2000–01. Snow presence or absence was inferred from ground observations of snow depth at 1330 stations in the Missouri River basin and 762 stations in the Columbia River basin, and was compared with the presence/absence classification for the corresponding pixels in the MODIS and NOHRSC SCA products. On average, the MODIS SCA images classified fewer pixels as cloud than NOHRSC, the effect of which was that 15% more of the Columbia basin area could be classified as to presence–absence of snow, while overall there was a statistically insignificant difference over the Missouri basin. Of the pixels classified as cloud free, MODIS misclassified 4% and 5% fewer overall (for the Columbia and Missouri basins respectively) than did the NOHRSC product. When segregated by vegetation cover, forested areas had the greatest differences in fraction of cloud cover reported by the two SCA products, with MODIS classifying 13% and 17% less of the images as cloud for the Missouri and Columbia basins respectively. These differences are particularly important in the Columbia River basin, 39% of which is forested. The ability of MODIS to classify significantly greater amounts of snow in the presence of cloud in more topographically complex, forested, and snow‐dominated areas of these two basins provides valuable information for hydrologic prediction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The ecological situation of the Tarim River basin in China seriously declined since the early 1950s, mainly due to a strong increase in water abstraction for irrigation purposes. To restore the ecological system and support sustainable development of the Tarim River basin region in China, more hydrological studies are demanded to properly understand the processes of the watershed and efficiently manage the water resources. Such studies are, however, complicated due to the limited data availability, especially in the mountainous headwater regions of the Tarim River basin. This study investigated the usefulness of remote sensing (RS) data to overcome that lack of data in the spatially distributed hydrological modelling of the basin. Complementary to the conventional station‐based (SB) data, the RS products that are directly used in this study include precipitation, evapotranspiration and leaf area index. They are derived from raw image data of the Chinese Fengyun meteorological satellite and from the Moderate Resolution Imaging Spectroradiometer (MODIS). The MODIS land surface temperature was used to calculate the atmospheric temperature lapse rate to describe the temperature dependency on topographical variations. Moreover, MODIS‐based snow cover images were used to obtain model initial conditions and as validation reference for the snow model component. Comparison of model results based on RS input versus conventional SB input exhibited similar results in terms of high and low river runoff extremes, cumulative runoff volumes in both runoff and snow melting seasons and spatial and temporal variability of snow cover. During summer time, when the snow cover shrinks in the permanent glacier region, it was found that the model resolution influences the model results dramatically, hence, showing the importance of detailed (RS based) spatially distributed input data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The dominant source of streamflow in many mountainous watersheds is snowmelt recharge through shallow groundwater systems. The hydrological response of these watersheds is controlled by basin structure and spatially distributed snowmelt. The purpose of this series of two papers is to simulate spatially varying snowmelt and groundwater response in a small mountainous watershed. This paper examines the spatially and temporally variable snowmelt to be used as input to the groundwater flow modelling described in the second paper. Snowmelt simulation by the Simultaneous Heat and Water (SHAW) model (a detailed process model of the interrelated heat, water and solute movement through vegetative cover, snow, residue and soil) was validated by applying the model to two years of data at three sites ranging from shallow transient snow cover on a west-facing slope to a deep snow drift on a north-facing slope. The simulated energy balances for several melt periods are presented. Snow depth, density, and the magnitude and timing of snow cover outflow were simulated well for all sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号