首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
卫星激光测距(SLR)技术作为卫星精密定轨手段和轨道检核重要方法,激光反射器已经成为重力卫星和测高卫星等低轨卫星的基本载荷.经典的SLR台站坐标是使用动力学方法计算的,本文根据多颗低轨卫星(LEO)多历元的激光观测数据,采用几何方法开展地面SLR测站坐标计算.通过组建低轨卫星群实现对全球激光站的动态观测,为了合理配置不同低轨卫星间观测值权重,削弱低轨卫星群可能存在的系统性偏差,提出采用方差分量估计组合的最小二乘法进行解算.实测结果显示,解算出SLR台站坐标框架解与SLRF2014差异平均值在25.1 mm,外符合精度达到1~2 cm.该方法避免了复杂动力学模型,SLR台站坐标的几何计算方法既可以作为激光测站框架解算手段之一,同时将LEO卫星群作为空间并址站实现不同技术地球参考框架间的融合.  相似文献   

2.
GRACE卫星重力在地震研究中的应用进展   总被引:1,自引:0,他引:1  
地球重力场恢复与气候实验卫星(GRACE)在运行期间提供了大量的地球时变重力场观测数据,在大地测量、地球环境变化等领域有非常广泛的应用.在固体地球科学研究中,GRACE重力场数据被广泛应用于天然地震研究,由于地震过程中存在大范围的质量迁移,大型地震引起的重力变化可以被GRACE卫星探测到.同时GRACE记录的地震同震及震后长期的重力场变化对反演地震震源参数也起到了帮助作用.本文从GRACE卫星重力场在地震研究中的应用出发,在回顾了GRACE卫星重力在地震应用的主要进展的基础上,总结了以地震研究为应用目标的数据处理方法与流程,为地震同震及震后卫星重力数据处理提供了技术思路.本文结合前人在2004年M_W9.3苏门答腊地震、2010年M_W8.8智利地震、2011年M_W9.0日本东北地震的研究成果,针对地震重力变化的同震观测、震后观测、间接观测等领域,总结了GRACE卫星重力的主要应用进展,提出了其中涉及的GRACE数据处理与地震综合解释的主要研究问题.在总结技术研究进展的基础上,本文以2004年M_W9.3苏门答腊地震为研究对象,对GRACE卫星重力数据序列进行处理,得到该地震的同震重力变化特性,并以此为基础进行了地震同震重力变化的特征分析.在回顾和总结的基础上,本文结合GRACE-Follow on计划的优势,提出未来GRACE卫星应用于地震研究的发展展望.  相似文献   

3.
自2002年以来,GRACE卫星探测计划可提供高精度的时变地球重力场,用以探测地球系统的物质分布.自1998年中国大陆重力监测网建立以来,利用FG5绝对重力仪和LCR-G型相对重力仪每2年对该网进行重复测量获取重力场时变信息.基于此,本文利用GRACE和地面重力测量获得了中国大陆重力场的长期年变率,利用位错理论根据USGS发布的断层模型计算了2008年汶川Ms8.0级地震的同震重力变化并进行了300 km高斯滤波.GRACE卫星重力和地面重力结果均表明华北地区地下水流失严重,在绝对重力基准站上,GRACE卫星重力与绝对重力变化率较为一致,汶川区域的地面重力变化结果可视为大地震前兆信息.  相似文献   

4.
高精度GRACE卫星时变重力场反演一直是卫星重力测量中的难题.为了恢复高精度的时变地球重力场模型,本文联合GRACE卫星的星载GPS和KBR星间测速观测数据,在对GRACE卫星进行精密定轨的同时,解算出60阶月平均地球重力场模型.通过对GRACE卫星的定轨精度、星载GPS相位和KBR星间测速数据的拟合残差以及时变地球重力场模型解算精度等分析,表明:(1)与美国宇航局喷气推进实验室(JPL)发布的约化动力学精密轨道相比,本文确定GRACE卫星轨道三维位置误差小于5 cm.(2)星载GPS相位数据拟合残差为5~8 mm,KBR星间测速数据拟合残差为0.18~0.30μm·s~(-1).(3)解算的月平均重力场模型与美国德克萨斯大学空间研究中心(CSR)、德国地学研究中心(GFZ)和JPL发布的RL05模型精度接近,时变信号在全球范围内具有很好的空间分布一致性.通过计算亚马逊流域和长江流域的水储量变化,本文与上述三个机构的计算结果无明显差异,且相关系数均达0.9以上.可见,本文建立的卫星轨道与重力场同解算法具有反演高精度GRACE时变重力场能力,为我国卫星重力场反演提供了重要的技术支持.  相似文献   

5.
海潮对卫星重力场恢复的影响   总被引:7,自引:2,他引:7       下载免费PDF全文
本文讨论了海潮对卫星重力测量的影响问题. 首先介绍了海潮对卫星重力测量影响的基本理论;采用FES02和TPXO6海潮模型计算了海潮负荷对卫星重力结果前60阶的影响;并用两个模型之间的差异作为海潮模型精度的估计量,据此计算了海潮模型误差对卫星重力结果的影响. 与GRACE恢复的重力场精度的比较说明:海潮对重力场40阶以下的影响都超过了目前重力场恢复精度;尽管由于卫星测高技术的发展,海潮模型的精度有了很大的提高,但目前的全球海潮模型用于GRACE重力场恢复的前12阶的改正还是不够精确. 另外,我们也利用中国东海和南海潮汐资料以及FES02海潮模型讨论了中国近海潮汐效应对GRACE观测的影响. 结果说明该影响与海潮模型的误差相当. 这反映了当前海潮模型的不确定度,因此通过结合全球验潮站资料有望提高海潮对卫星重力测量的改正精度.  相似文献   

6.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场. 第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程. 第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数. 如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加. 因此,6点RIRM公式是提高下一代地球重力场精度的较优选择. 第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性. 随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高. 第四,基于6点RIRM公式,通过30天观测数据和采样间隔5 s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m. 研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE Follow-On地球重力场精度较GRACE至少高10倍.  相似文献   

7.
利用卫星重力测量手段监测全球质量变化取得了巨大成功,本文基于牛顿万有引力定律在三维空间直角坐标系中导出利用重力卫星观测数据监测全球质量变化的三维点质量模型法,该方法可直接利用重力卫星的轨道和星间观测数据或时变重力场模型计算全球质量变化,由于利用卫星观测数据计算地表质量变化的向下延拓过程以及观测数据噪声的影响,需要采用合适的空间约束方程或正则化技术对解算结果进行约束或平滑处理.利用合成全球质量变化模型模拟一个月的GRACE双星轨道和星间距离变率数据计算全球质量变化,对三维点质量模型法进行分析验证,采用零阶Tikhonov正则化技术处理病态问题.结果表明,三维点质量模型法可有效用于重力卫星观测数据监测全球质量变化,为利用重力卫星观测数据监测全球质量变化提供一种可选的途径.  相似文献   

8.
毫米级地球参考框架的构建   总被引:4,自引:0,他引:4       下载免费PDF全文
本文指出了最新的国际地球参考框架ITRF(International Terrestrial Reference Frame)2005已不能满足当今毫米级地球动态变化监测的需要.提出了利用ITRF2005、SBL/GGFC(Special Bureau for Loading/Global Geophysical Fluids Center)和GRACE(Gravity Recovery and Climate Experiment)等卫星的最新成果,构建毫米级地球参考框架的方案,介绍了对其两个关键问题:地壳非线性运动特征∑RΔXiR(t)和地球质心运动ΔX0(t)的空间技术(GPS,VLBI,SLR和GRACE)监测和地球物理因素模制的方法和一些初步结果,并对目前建立和实现毫米级地球参考框架存在的问题和所能达到的精度进行了初步评估.  相似文献   

9.
本研究通过对重力卫星GRACE观测数据的处理,采用去相关加300 km半径的高斯平滑,成功地提取了2010智利Mw8.8地震所产生的重力变化信号,最大变化幅度达到7 μGal,并且与位错理论计算结果具有较好的一致性.这是继GRACE检测出2004苏门答腊M9.3地震重力变化后的又一个卫星观测地震的例证,说明GRACE具有检测出M<9.0量级地震的能力,为利用GRACE研究地震以及其更广泛的应用提供了可靠的依据.  相似文献   

10.
利用GRACE空间重力测量监测长江流域水储量的季节性变化   总被引:13,自引:0,他引:13  
2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列. GRACE的星座由两颗相距约220 km, 高度保持300~500 km, 而倾角保持约90°的近极轨卫星组成. 由于采用星载GPS和非保守力加速度计等高精度定轨技术以及高精度的星-星跟踪数据反演地球重力场, 在几百公里和更大空间尺度上, GRACE重力场的精度大大超过此前的卫星重力观测. 根据GRACE时变重力场反演的地球系统质量重新分布对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义. 在长期时间尺度上, GRACE的结果可用于研究北极冰的变化, 并进而研究极冰融化对全球气候变化, 特别是对海平面长期变化的影响. 在季节性时间尺度上, 利用GRACE重力场的精度足以揭示平均小于1 cm的地表水变化或小于1 mbar的海底压强变化. 除了巨大的社会和经济效益外, 这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义. 利用2002年4月至2003年12月之间共15个月的GRACE时变重力场揭示了全球水储量的明显季节性变化, 并重点分析了中国长江流域水储量的变化. 结果表明长江流域水储量周年变化幅度可达到3.4 cm等效水高, 其最大值出现在春季和初秋. 根据GRACE时变重力场反演的水储量变化与两个目前最好的全球水文模型的符合相当好, 其差别小于1 cm等效水高. 研究表明现代空间重力测量技术在监测一些大流域的水储量变化(如长江流域)、全球水循环和气候变化上有巨大的应用潜力.  相似文献   

11.
《Journal of Geodynamics》2010,49(3-5):157-165
Since 2002 the Earth’s gravity field is globally observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The GRACE monthly gravity field solutions, available from several analysis centres, reflect mass variations in the atmosphere, hydrosphere and geosphere. Due to correlated noise contained in these solutions, it is, however, first necessary to apply an appropriate filtering technique. The resulting, smoothed time series are applied not only to determine variations with different periodic signatures (e.g., seasonal, short and medium-term), but to derive long-periodic mass variations and secular trends as well. As the GRACE monthly solutions always show the integral effect of all mass variations, for separation of single processes, like the GIA (Glacial isostatic adjustment)-related mass increase in Fennoscandia, appropriate reduction models (e.g. from hydrology) are necessary.In this study we show for the example of the Fennoscandian uplift area that GRACE solutions from different analysis centres yield considerably different secular trends. Furthermore, it turns out that the inevitable filtering of the monthly gravity field models affects not only the amplitudes of the signals, but also their spatial resolution and distribution such as the spatial form of the detected signals. It also becomes evident that the determination of trends has to be performed together with the determination of periodic components. All periodic terms which are really contained in the data, and only such, have to be included. The restricted time span of the available GRACE measurements, however, limits the separation of long-periodic and secular signals. It is shown that varying the analysis time span affects the results considerably. Finally, a reduction of hydrological signals from the detected integral secular trends using global hydrological models (WGHM, LaDWorld, GLDAS) is attempted. The differences among the trends resulting from different models illustrate that the state-of-the-art hydrology models are not suitable for this purpose as yet. Consequently, taking the GRACE monthly gravity field solutions from one centre, choosing a single filter and applying an insufficiently reliable reduction model leads sometimes to a misinterpretation of considered geophysical processes. Therefore, one has to be cautious with the final interpretation of the results.  相似文献   

12.
Time variable gravity field models derived from the satellite mission GRACE have been demonstrated to be consistent with water mass variations in the global hydrological cycle. Independent observations are provided by terrestrial measurements. In order to achieve a maximum of reliability and information gain, ground-based gravity observations may be deployed for comparison with the gravity field variations derived from the GRACE satellite mission. In this context, the data of the network of superconducting gravimeters (SG) of the ‘Global Geodynamics Project’ (GGP) are of particular interest. This study is focused on the dense SG network in Central Europe with its long-term gravity observations. It is shown that after the separation and reduction of local hydrological effects in the SG observations especially for subsurface stations, the time-variable gravity signals from GRACE agree well with the terrestrial observations from the SG station cluster.Station stability of the SG sites with respect to vertical deformations was checked by GNSS based observations. Most of the variability can be explained by loading effects due to changes in continental water storage, and, in general, the stability of all stations has been confirmed.From comparisons based on correlation and coherence analyses in combination with the root mean square (RMS) variability of the time series emerges, that the maximum correspondence between the SG and GRACE time series is achieved when filtering the GRACE data with Gaussian filters of about 1000 km filter length, which is in accordance with previous publications.Empirical Orthogonal Functions (EOF) analysis was applied to the gravity time series in order to identify common characteristic spatial and temporal patterns. The high correspondence of the first modes for GRACE and SG data implies that the first EOF mode represents a large-scale (Central European) time-variable gravity signal seen by both the GRACE satellites and the SG cluster.  相似文献   

13.
王陈燕  游为  范东明 《地球物理学报》2019,62(11):4142-4155
2004年12月苏门答腊发生MW9.3地震,造成巨大的质量重新分布.利用GRACE卫星月重力场数据计算了研究区域地面1°×1°网格点上的重力变化时间序列,采用主成分分析和独立成分分析两种方法,提取了重力变化的空间与时间特征,结果显示震中两侧区域的重力变化呈两极分布,其中东侧重力下降,西侧重力增加.相较于传统的主成分分析方法,独立成分分析能更好地从原始信号中提取地震的信息,能分解出具有显著阶跃变化的独立成分.除了2004年的苏门答腊大地震外,独立成分分析还分解得到了2012年Andaman地震的特征,与该次地震的空间特征与时间序列基本一致.相较于适合定量分析的多项式拟合方法,独立成分分析更适合大范围区域的定性分析,建议将两种方法相结合,取长补短,从而为GRACE地震监测提供一种更为客观、有效的方法.  相似文献   

14.
MASCON方法是直接利用GRACE任务的卫星跟踪卫星技术研究地表浅层物质运动的一种有效技术手段.该方法相较Stokes球谐系数法在一定程度上克服了时变信号的滤波问题,能有效解决该方法时变重力场的南北条带效应.本文在对现有MASCON方法深入研究的基础上对其进行了改进,提出引入卫星精密轨道作为观测值,联合高低跟踪和低低跟踪两类观测数据,实现MASCON参数及有关动力学模型参数求解的思路,在不影响时变信号主要由星间距离变率观测值提供的前提下,采用方差分量估计方法合理定权,充分利用轨道数据的绝对基准作用,用一种改进的途径实现了MASCON方法.利用2008年GRACE的卫星重力观测数据,获得了亚马逊地区的地表物质迁移结果,并与GLDAS水文模型、CSR RL05球谐系数和JPL MASCON方法计算的水储量变化进行比较,表明一致性较好,验证了本文所提MASCON方法解算思路的可靠性,该方法为研究局部地区的地表物质迁移提供了一种可行手段.  相似文献   

15.
Analysis is given of a relatively new method for studying the distribution and dynamics of land water resources, which is based on measuring the anomalies of Earth gravity field with the use of GRACE satellite system. The international satellite experiment on determining the gravity and climate changes has been carried out since 2002 with the aim of making high-frequency (within the frequency range of 10900?C36000 GHz) measurements of time variations in Earth??s gravity field. The measurement method and the procedure of data processing and evaluating the hydrological-geohydrological characteristics of large river basins and regions based on GRACE data.  相似文献   

16.
重力卫星精密星间测距系统滤波器技术指标论证   总被引:2,自引:0,他引:2       下载免费PDF全文
本文基于重力卫星精密星间测距测量模式,从星间测距观测值与地球重力场频谱关系的角度,建立了距离观测值关于重力位系数的敏感矩阵,分析了各阶次重力场位系数对应的敏感矩阵的频谱特性,讨论了星间测距信息中能反应地球重力场信息的有效信号频带,给出了能最大限度保留地球重力场信息的低通滤波器的通带截止频率、通带增益波纹和频率采样率技术指标设计方案,可为我国首期卫星跟踪卫星重力测量计划的主要技术指标的初步设计提供参考.  相似文献   

17.
Presently, two satellite missions, Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE), are making detailed measurements of the Earth’s gravity field, from which the geoid can be obtained. The mean dynamic topography (MDT) is the difference between the time-averaged sea surface height and the geoid. The GOCE mission is aimed at determining the geoid with superior accuracy and spatial resolution, so that a more accurate MDT can be estimated. In this study, we determine the mean positions of the Antarctic Circumpolar Current fronts using the purely geodetic estimates of the MDT constructed from an altimetric mean sea surface and GOCE and GRACE geoids. Overall, the frontal positions obtained from the GOCE and GRACE MDTs are close to each other. This means that these independent estimates are robust and can potentially be used to validate frontal positions obtained from sparse and irregular in situ measurements. The geodetic frontal positions are compared to earlier estimates as well as to those derived from MDTs based on satellite and in situ measurements and those obtained from an ocean data synthesis product. The position of the Sub-Antarctic Front identified in the GOCE MDT is found to be in better agreement with the previous estimates than that identified in the GRACE MDT. The geostrophic velocities derived from the GOCE MDT are also closer to observations than those derived from the GRACE MDT. Our results thus show that the GOCE mission represents an improvement upon GRACE in terms of the time-averaged geoid.  相似文献   

18.
The Gravity Recovery and Climate Experiment (GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since 2002. As large earthquakes cause significant mass changes on and under the Earth’s surface, GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission, GRACE has successfully detected seismic gravitational changes of several giant earthquakes, which include the 2004 Sumatra–Andaman earthquake, 2010 Maule (Chile) earthquake, and 2011 Tohoku-Oki (Japan) earthquake. In this review, we describe by examples how to process GRACE time-variable gravity data to retrieve seismic signals, and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号