首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As large-scale ocean circulation is a key regulator in the redistribution of oceanic energy, evaluating the multi-decadal trends in the western Pacific Ocean circulation under global warming is essential for not only understanding the basic physical processes but also predicting future climate change in the western Pacific. Employing the hydrological observations of World Ocean Atlas 2018(WOA18) from 1955 to 2017, this study calculated the geostrophic currents, volume transport and multidecadal trends for the North Equatorial Current(NEC), the North Equatorial Countercurrent(NECC), the Mindanao Current(MC), the Kuroshio Current(KC) in the origin and the New Guinea Coastal Undercurrent(NGCUC) within tropical western Pacific Ocean over multi-decades. Furthermore, this study examined the contributions of temperature and salinity variations. The results showed significant strengthening trends in NEC, MC and NGCUC over the past six decades, which is mainly contributed by temperature variations and consistent with the tendency in the dynamic height pattern. Zonal wind stress averaged over the western Pacific Ocean in the same latitude of each current represents the decadal variation and multi-decadal trends in corresponding ocean currents, indicating that the trade wind forcing plays an important role in the decadal trend in the tropical western Pacific circulation. Uncertainties in the observed hydrological data and trends in the currents over the tropical western Pacific are also discussed. Given that the WOA18 dataset covers most of the historical hydrological sampling data for the tropical western Pacific, this paper provides important observational information on the multi-decadal trend of the large-scale ocean circulation in the western Pacific.  相似文献   

2.
On formation of the intermediate water in the Northern Pacific Ocean   总被引:2,自引:0,他引:2  
Summary Meridional cross sections of temperature, salinity and oxygen of the North Pacific Ocean are prepared to show location of the intermediate water, which is formed at the polar front and spreads on constantsigma-t surfaces. Geostrophic flow in a meridional plane is obtained by dynamic calculation. Friction-driven meridional circulation is determined from the zonally averaged density distribution. The latter flow seems to be more appropriate for explanation of mechanism of spread of the water.Oceanographic Institute Contribution No. 174.  相似文献   

3.
Summary The annual mean distribution of the surface stress curl over the Northern Hemisphere has been estimated from the horizontal vorticity advection in the atmosphere by using the upper-wind statistics as published byCrutcher [2]3). The results are used to compute the wind-driven mass transport (Sverdrup transport) in North Atlantic and North Pacific. The calculated intensity of the Gulf Stream is largest at the latitude 35°N, where a mass transport of 45×106 tons sec–1 is obtained; for the maximum intensity of the Kuroshio current a value of 60×106 tons sec–1 is obtained.Research supported in part by the Section of Atmospheric Sciences, National Science Foundation, Grant GP-2561.The research for this study was started by the author at the Department of Meteorology and Oceanography, The University of Michigan, Ann Arbor, Mich.  相似文献   

4.
Marine debris in the oceanic realm is an ecological concern, and many forms of marine debris negatively affect marine life. Previous observations and modeling results suggest that marine debris occurs in greater concentrations within specific regions in the North Pacific Ocean, such as the Subtropical Convergence Zone and eastern and western "Garbage Patches". Here we review the major circulation patterns and oceanographic convergence zones in the North Pacific, and discuss logical mechanisms for regional marine debris concentration, transport, and retention. We also present examples of meso- and large-scale spatial variability in the North Pacific, and discuss their relationship to marine debris concentration. These include mesoscale features such as eddy fields in the Subtropical Frontal Zone and the Kuroshio Extension Recirculation Gyre, and interannual to decadal climate events such as El Ni?o and the Pacific Decadal Oscillation/North Pacific Gyre Oscillation.  相似文献   

5.
FGOALSg快速耦合模式模拟的北太平洋年代际变率   总被引:5,自引:0,他引:5       下载免费PDF全文
本文分析了由中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)最新发展的FGOALSg快速耦合模式300 a积分模拟结果,通过与多种观测资料的对比分析,讨论了北太平洋年代际变率的时空结构、主要年代际模态的演变特征以及与ENSO的联系等研究内容. 结果表明:该模式能成功模拟出北太平洋年代际变率的主要空间分布特征;模拟的年代际模态具有多时间尺度性,其中最显著的是周期约为10~20 a左右的准20年振荡模态,该模态上层海洋热容量异常的演变过程主要表现为大致沿副热带海洋涡旋做海盆尺度顺时针旋转的特征,相应的大气异常不仅与阿留申低压的变异有关,而且与太平洋-北美PNA)遥相关型以及上游的欧亚大气环流异常有密切关系;模拟的北太平洋年代际变率对年际ENSO循环的发生频率和强度有明显的调制作用. 但模拟的KOE区和阿拉斯加湾SST异常振幅比观测偏强,这与模式海冰偏多、高纬度SST偏冷的误差有关.  相似文献   

6.
A numerical model of the Atlantic Ocean was used to study the low-frequency variability of meridional transports in the North Atlantic. The model shows a behaviour similar to those used in previous studies, and the temporal variability of certain variables compares favourably to observed time series. By changing the depth and width of the sills between the subpolar North Atlantic and the Nordic Seas, the mean horizontal and overturning circulation as well as some water mass properties are modified significantly. The reaction of meridional oceanic transports to atmospheric forcing fluctuations remains, however, unchanged. The critical role of the surface heat flux retroaction term for the meridional heat transport in stand-alone ocean models is discussed. The experiments underline the role of atmospheric variability for fluctuations of the large-scale ocean circulation on time scales from years to decades, and they support the hypothesis that the mean overturning strength is controlled by the model representation of the density of the overflow water masses.Responsible Editor: Dirk Olbers  相似文献   

7.
Wang  Jia  Chang  Fengming  Li  Tiegang  Sun  Hanjie  Cui  Yikun  Liu  Tianhao 《中国科学:地球科学(英文版)》2020,63(11):1714-1729

Meridional heat transport of the western Pacific boundary current (the Kuroshio Current) is one of the key factors in global climate change. This current is important because it controls the temperature gradient between low latitudes and the North Pacific and so significantly influences mid-latitude atmosphere-ocean interactions. Here we reconstruct changes in hydrological conditions within the mid-latitude mainstream of the Kuroshio Current based on faunal analysis of planktonic foraminifera in core DSDP 296 from the Northwest Pacific Ocean. This approach enabled us to deduce evolutionary processes within the Kuroshio Current since the Pliocene. A total of 57 species in the coarser section (>150 µim) were identified; results indicate that planktonic foraminiferal faunal evolution has mainly been characterized by three major stages, the first of which comprised mixed-layer warm-water species of Globigerinoides ruber which first appeared between 3.5 and 2.7 Ma and then gradually increased in content. Percentages of another warm-water species of G. conglobatus also gradually increased in number over this interval. Variations in warm-water species indicate a gradual rise in sea surface temperature (SST) and imply initiation of Kuroshio Current impact on the Northwest Pacific Ocean since at least 3.5 Ma. Secondly, over the period between 2.7 and 2.0 Ma, thermocline species of Globigerina calida, Neogloboquadrina humersa, Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata started to appear in the section. This fauna was dominated by G. ruber as well as increasing G. conglobatus contents. These features imply a further rise in SST and its gradually enhanced influence on thermocline water, suggesting strengthening of the Kuroshio Current since 2.7 Ma. Thirdly, between 2.0 Ma and present, increasing contents of thermocline species (i.e., G. calida, N. dutertrei and P. obliquiloculata) indicate a gradual rise in seawater temperature at this depth and also imply more intensive Kuroshio Current during this period. On the basis of comparative records from cores ODP 806 and DSDP 292 from the low latitude Western Pacific, we propose that initiation of the impact of the Kuroshio Current in the Northwest Pacific and it subsequent stepwise intensifications since 3.5 Ma can be closely related to the closure and restriction of the Indonesian and Central American seaways as well as variations in the Western Pacific Warm Pool (WPWP) and equatorial Pacific region.

  相似文献   

8.
利用IAP9L-AGCM模式考察了模式中与南极涛动异常相关的海温敏感区,发现南半球高纬海温异常能够强迫出南极涛动异常,而赤道东太平洋海温异常与太平洋南美型密切相关.研究了南极涛动异常对冬春季北半球大气环流及亚洲北部气温的影响,结果表明,南极涛动加强,能够引起北半球高纬环流异常和欧亚西风加强,以及亚洲北部地表气温和850 hPa气温显著增温.数值模拟支持了已有的诊断结果,也证实了冬春季节南极涛动异常下两半球高纬间的经向遥相关存在.  相似文献   

9.
Australia's North West Shelf supports a diverse range of tropical habitats and marine communities, as well as being Australia's most economically significant marine region. This study is the first attempt to describe the ocean circulation across the North West Shelf on time-scales from hours to years, and space scales from 10 km over the entire shelf to 1 km in a selected focus area around the Dampier Archipelago. A series of nested circulation models have been developed with forcing by realistic winds, tides, and larger scale oceanographic conditions (taken from a global circulation model). Dispersion and connectivity patterns have also been estimated over the shelf using particle-tracking techniques. The simulations covered a period of more than 6 years, allowing the tidal, seasonal, and interannual characteristics to be investigated. Model results confirm that the instantaneous current patterns are strongly dominated by the barotropic tide and its spring–neap cycle. However, longer term transports over the inner- and mid-shelf were mainly controlled by wind-driven flow, which followed the seasonal switch from summer monsoon winds to southeasterly trades in winter. Results were shown to be relatively insensitive to adjustable model parameters and sub-model structures. However, model performance was strongly dependent on the quality of the forcing fields. Connectivity results have been represented in terms of a comprehensive set of statistical probabilities that have been made available online (http://www.per.marine.csiro.au/connie). The potential regional-scale connectivity between coral reefs on the North West Shelf has been used to illustrate the approach.  相似文献   

10.
The relationship between the sea ice cover in the North Pacific and the typhoon frequency has been studied in this paper. It follows that the index for the sea ice cover in the North Pacific (ISA) both in December-January-February (DJF) and in March-April-May (MAM) is negatively correlated with annual typhoon number over the western North Pacific (TNWNP) during 1965―2004, with correlation coeffi-cients of -0.42 and -0.49 respectively (above 99% significant level). Large sea ice cover in the North Pacific tends to decrease TNWNP. Positive ISA (MAM) is associated with the tropical circulation and SST anomalies in the North Pacific, which may lead to unfavorable dynamic and thermal conditions for typhoon genesis over WNP from June to October (JJASO). The variability of the atmospheric circula-tion over the North Pacific, associated with the ISA anomaly in MAM is connected to the tropical at-mospheric circulation variability in MAM via the teleconnection wave train. Besides, as the tropical circulation has strong seasonal persistency from the MAM to JJASO, thus, the ISA in MAM-related variability of the tropical atmospheric circulation as well as the SST can affect the typhoon activity over the western North Pacific.  相似文献   

11.
Eddy momentum fluxes, i.e. Reynold stresses, are computed for the latitude bands of the Gulf Stream and Kuroshio extensions using 13 years of data from the merged satellite altimeter product of Le Traon et al. The spatial pattern and amplitude of the fluxes is remarkably similar to that found by Ducet and Le Traon using the 5 years of data that were available to them. In addition to updating the work of Ducet and Le Traon, we provide new insight into the role played by the underlying variable bottom topography, both for determining the structure of the eddy momentum fluxes seen in the satellite data and for influencing the way these fluxes feedback on the mean flow. While there is no clear evidence that eddies locally flux momentum into the eastward jets of the Gulf Stream and Kuroshio extensions, a clearer picture emerges after zonally integrating across each of the North Atlantic and North Pacific basins. We argue that the eddy momentum fluxes do indeed drive significant transport, a conclusion supported by preliminary results from a 3-D model calculation. We also present evidence that in the North Pacific, the Reynolds stresses are important for driving the recirculation gyres associated with the Kuroshio extension, taking advantage of new data from both observations and high-resolution model simulations.  相似文献   

12.
The deep overflow through the Luzon Strait drives the cyclonic deep circulation in the South China Sea (SCS). In the mean time, the intruding Pacific deep water transforms and upwells due to enhanced diapycnal mixing in the SCS. Both processes greatly contribute to the SCS meridional overturning circulation (SCSMOC). At the same time, both the deep circulation and meridional overturning circulation are modulated by rough topography in the SCS. Furthermore, the spatial structure of the SCSMOC infers a link between the upper-layer circulation and deep circulation in the SCS. This paper reviews recent advances in the SCS deep circulation and meridional overturning circulation, including the driving mechanism of the SCS deep circulation and its modulation by topography, as well as the spatial structure of the SCSMOC and its dynamical mechanism.  相似文献   

13.
Petroleum residues, or tar lumps, are concentrated in the northwestern portion of the Pacific Ocean, particularly in the Kuroshio current system. The source of the tar appears to be tank washings from tankers on the very large Middle East to Japan route. Tar pollutants apparently are discharged by tankers south of Japan, become entrained in the Kuroshio current, and create a plume of contamination which extends downstream for 7000 km across the Pacific.  相似文献   

14.
Mellor  George 《Ocean Dynamics》2019,69(1):43-50
Ocean Dynamics - When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to...  相似文献   

15.
The adjoint approach is a variational method which is often applied to data assimilation widely in meteorology and oceanography. It is used for analyses on observing optimization for the wind-driven Sverdrup circulation. The adjoint system developed by Thacker and Long (1992), which is based on the GFDL Byran-Cox model, includes three components, i. e. the forward model, the adjoint model and the optimal algorithm. The GFDL Byran-Cox model was integrated for a long time driven by a batch of ideal wind stresses whose meridional component is set to null and zonal component is a sine function of latitudes in a rectangle box with six vertical levels and 2 by 2 degree horizontal resolution. The results are regarded as a "real" representative of the wind-driven Sverdrup circulation, from which the four dimensional fields are allowed to be sampled in several ways, such as sampling at the different levels or along the different vertical sections. To set the different samples, the fields of temperature, salinity and velocities function as the observational limit in the adjoint system respectively where the same initial condition is chosen for 4D VAR data assimilation. By examining the distance functions which measure the misfit between the circulation field from the control experiment of the adjoint system with a complete observation and those from data assimilation of adjoint approach in these sensitivity experiments respectively, observing optimizations for the wind-driven Sverdrup circulation will be suggested under a fixed observational cost.  相似文献   

16.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

17.
周波涛  崔绚 《地球物理学报》2009,52(12):2958-2963
观测事实揭示出春季Hadley环流与夏季西北太平洋热带气旋频数之间存在显著的负相关关系.由春季Hadley环流异常引起的西北太平洋地区夏季纬向风垂直切变、大气辐合辐散等的异常变化是这一关系存在的内在原因.本文通过数值试验对这一关系的真实性进行了验证,即利用中国科学院大气物理研究所发展的9层大气环流模式(IAP9L-AGCM)模拟了春季Hadley环流异常偏强情景,并分析了该情景下影响西北太平洋热带气旋生成的环境场的响应.结果表明,在春季Hadley环流偏强情景下,夏季西北太平洋地区纬向风垂直切变幅度加大,低空大气异常辐散,高空大气异常辐合,东亚夏季风减弱,这种环流背景不利于热带气旋生成和发展,因此,西北太平洋热带气旋频数异常偏少.数值模拟结果与已有的诊断结果相吻合,进而证实了春季Hadley环流与夏季西北太平洋热带气旋频数负相关关系的存在.因此,春季Hadley环流信号可以用于西北太平洋热带气旋活动的气候预测.  相似文献   

18.
本文使用欧洲ECMWF(ERA40)再分析资料,通过经验正交函数(Empirical Orthogonal Function,EOF)分解探讨了冬季北太平洋风暴轴的变异特征,使用回归分析得到了与风暴轴空间异常型相关的冬季大气平均流异常、表层海温(Sea Surface Temperature,SST)异常的空间耦合型.研究结果表明,冬季北太平洋风暴轴主要有两种空间异常型,第一种是风暴轴中东部明显北抬(南压),使得整个风暴轴向东北(东南)倾斜,与此同时,在中纬度北太平洋海区,冬季暖(冷)异常的洋面上是异常高压(低压),海气系统在垂直向表现为一种暖脊(冷槽)配置,在对流层中高层是太平洋-北美(Pacific North American,PNA)型负(正)位相.第二种是风暴轴整体性加强(减弱)并偏北(南),此时,黑潮区海温异常偏暖(冷),低层阿留申低压和高空的西风急流略偏北(南),对流层中高层表现为西太平洋(Western Pacific,WP)型负(正)位相.风暴轴EOF分解的时间系数与阿留申低压指数、PNA指数、WP指数,以及与尼诺3区(NINO3)指数、黑潮海温指数间显著的相关性再次证实了在北太平洋中纬度地区存在着SST异常、风暴轴异常和大气平均流异常三者间的空间耦合型.  相似文献   

19.
Abstract

One of the central unsolved theoretical problems of the large scale ocean circulation is concerned with explaining the very large transports measured in western boundary currents such as the Gulf Stream and the Kuroshio. The only theory up to now that can explain the size of these transports is that of non-linear recirculation in which the advective terms in the momentum equations became important near the western boundary. In this paper an alternative explanation is suggested. When bottom topography and baroclinic effects are included in a wind-driven ocean model it is shown that the western boundary current can have a transport larger than that predicted from the wind stress distribution even when the nonlinear advective terms are ignored. The explanation lies in the presence of pressure torques associated with bottom topography which can contribute to the vorticity balance in the same sense as the wind stress curl.

Three numerical experiments have been carried out to explore the nature of this process using a three dimensional numerical model. The first calculation is done for a baroclinic ocean of constant depth, the second for a homogeneous ocean with an idealized continental slope topography, and the third for a baroclinic ocean with the same continental slope topography. The nature of the vorticity balance and of the circulation around closed paths is examined in each case, and it is shown that bottom pressure torques lead to enhanced transport in the western boundary current only for the baroclinic case with variable depth.  相似文献   

20.
A new approach to understand the physical processes that govern internal variability of the large scale North Atlantic ocean circulation is outlined and current methods and results are reviewed. In this approach, based on the theory of dynamical systems, internal variability is viewed as arising through successive transitions when parameters are changed. The potential of the approach is demonstrated through analysesof solutions of intermediate complexity models of the wind-driven ocean circulation in the North Atlantic. In a quasi-geostrophic modelfor the flow in a rectangular basin with idealized wind forcing, the basic transitions are already found and physical mechanisms at work can be described in detail. Qualitatively, this transition behavior remains robust in more realistic models, having shallow water dynamics, realistic wind forcingand continental geometry, although patterns and time scales changethrough the model hierarchy. The relevance of the results is discussed inrelation to those of observations and of ocean general circulation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号