首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12482篇
  免费   480篇
  国内免费   142篇
测绘学   302篇
大气科学   957篇
地球物理   2818篇
地质学   4371篇
海洋学   1140篇
天文学   2005篇
综合类   30篇
自然地理   1481篇
  2021年   130篇
  2020年   164篇
  2019年   181篇
  2018年   240篇
  2017年   234篇
  2016年   320篇
  2015年   300篇
  2014年   298篇
  2013年   708篇
  2012年   386篇
  2011年   524篇
  2010年   457篇
  2009年   597篇
  2008年   502篇
  2007年   448篇
  2006年   472篇
  2005年   385篇
  2004年   434篇
  2003年   412篇
  2002年   407篇
  2001年   251篇
  2000年   263篇
  1999年   233篇
  1998年   229篇
  1997年   159篇
  1996年   171篇
  1995年   169篇
  1994年   176篇
  1993年   164篇
  1992年   151篇
  1991年   170篇
  1990年   151篇
  1989年   131篇
  1988年   122篇
  1987年   172篇
  1986年   139篇
  1985年   218篇
  1984年   262篇
  1983年   200篇
  1982年   177篇
  1981年   191篇
  1980年   162篇
  1979年   171篇
  1978年   174篇
  1977年   147篇
  1976年   145篇
  1975年   125篇
  1974年   103篇
  1973年   118篇
  1972年   76篇
排序方式: 共有10000条查询结果,搜索用时 537 毫秒
1.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   
2.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
3.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   
4.
Sapphirine–quartz granulites from the Cocachacra region of the Arequipa Massif in southern Peru record early Neoproterozoic ultrahigh‐temperature metamorphism. Phase equilibrium modelling and zircon petrochronology are used to quantify timing and pressure–temperature (P–T) conditions of metamorphism. Modelling of three magnetite‐bearing sapphirine–quartz samples indicates peak temperatures of >950°C at ~0.7 GPa and a clockwise P–T evolution. Elevated concentrations of Al in orthopyroxene are also consistent with ultrahigh‐temperature conditions. Neoblastic zircon records ages of c. 1.0–0.9 Ga that are interpreted to record protracted ultrahigh‐temperature metamorphism. Th/U ratios of zircon of up to 100 reflect U‐depleted whole‐rock compositions. Concentrations of heavy rare earth elements in zircon do not show systematic trends with U–Pb age but do correlate with variable whole‐rock compositions. Very large positive Ce anomalies in zircon from two samples probably relate to strongly oxidizing conditions during neoblastic zircon crystallization. Low concentrations of Ti‐in‐zircon (<10 ppm) are interpreted to result from reduced titania activities due to the strongly oxidized nature of the granulites and the sequestration of titanium‐rich minerals away from the reaction volume. Whole‐rock compositions and oxidation state have a strong influence on the trace element composition of metamorphic zircon, which has implications for interpreting the geological significance of ages retrieved from zircon in oxidized metamorphic rocks.  相似文献   
5.

This paper applied a logistic-based fuzzy logic inference system to integrate critical factors that could control orogenic gold mineralization in part of the Kushaka schist belt, north-central Nigeria to develop a process-based mineral potential mapping (MPM) of the area. The critical factors from geophysical and geological dataset were weighted using logistic functions. The fuzzy logic inference system provides the capability to handle complex geological processes that culminated in orogenic gold mineralization as well as minimizing systemic uncertainties/fuzziness that often plague MPM. The results of this work show that granitic intrusions with fuzzy scores of 0.67–0.90 played a major role in generating high geothermal gradient in the area. Seventy percent of the existing gold mine sites in the area spatially coincide with metasedimentary rocks, having fuzzy scores of 0.7–0.9; this suggests metasedimentary rocks as being responsible for the production of gold fluid and ligands in the area. The evidence of hydrothermal activity, with fuzzy scores of 0.53 and 0.91, confirms the occurrence of mineralization associated with quartz veins and granite rocks. Lithological contacts and faults, having fuzzy scores of 0.60–0.80, presumably contribute to the localization of orogenic gold mineralization in the area. Emerging from the results, favorable zones for primary orogenic gold mineralization in the area occurred predominantly on granite gneiss and quartz veins. The mineral potential map was found consistent with the local geology, structural styles and hydrothermal alteration signatures in the area, and its validation using the existing locations of geochemical anomalies and prediction–area rate curve in the study area showed 75 and 72% agreement, respectively, thus confirming the reliability of the developed mineral potential map for resource management.

  相似文献   
6.
7.
8.
The advanced capitalist ccuntries are undergoing an industrial devolution as remarkable as the industrial revolution of the nineteenth century. The removal of high-paying jobs through automation and geographical migration destroys the main market of the center and precipitates debt crises in newly industrialized countries of the periphery which have followed export-oriented growth policies. This results in a new, internationalized form of the crises of iate capitalism and provides a new institutional foucs for crisis in the international banks. The paper examines this global process from the perspective of the geography of class struggle.  相似文献   
9.
We examine a siphon-like mechanism for moving mass from the chromosphere to a gravitational well at the top of a magnetic loop to form a prominence. The calculations assume no apriori flow velocity at the loop base. Instead heating in the loop legs drives the flow. The prominence formation process requires two steps. First, the background heating rate must be reduced to on the order of 1 % of the initial heating rate required to maintain the coronal loop. This forms an initial condensation at the top of the loop. Second, the heating must take place only in the loop legs in order to produce a pressure differential which drives mass up into the well at the top of the loop. The heating rate in the loop must be increased once the prominence has begun to form or full prominence densities can not be achieved in a reasonable time. We conclude that this heating driven siphon-like mechanism is feasible for producing and maintaining prominences.  相似文献   
10.
The stability and evolution of cold, shock-bounded slabs is studied using numerical hydrodynamic simulations. We confirm the analysis of Vishniac (1994) [ApJ, 428, 186], who showed that such slabs are unstable if they are perturbed by a displacement larger than their width. The growth rate of this nonlinear thin shell instability (NTSI) is found to increase with decreasing wavelength, in qualitative agreement with Vishniac's analysis. The NTSI saturates when the bending angle becomes large and the growth in the width of the slab pinches off the perturbation. After saturation, the slab remains greatly extended with an average density much less than the original slab density, supported primarily by supersonic turbulence within the slab. Linear perturbations are also found to be unstable in that they can lead to turbulent flow within the slab, although this response to linear perturbations is distinct from, and much less violent than the NTSI.Richard McCray  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号