首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a PT evolution involving cooling at pressures of 8–9 kbar from >960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise PT path may be more likely, which would be consistent with the clockwise PT evolution of the extensive “normal” granulites (Tmax <900°C) and UHT granulites at other localities in the eastern segment of the Khondalite Belt. At Tuguiwula, for UHT metapelites with low bulk‐rock Mg/(Mg+FeT), the oxidation state/Fe3+ content is interpreted to be a significant factor in controlling the mineral assemblages. We find that these compositions tend to contain sapphirine under oxidized conditions but spinel (without sapphirine) under reduced conditions. This difference may account for the simultaneous presence of both sapphirine‐bearing UHT granulites and sapphirine‐absent garnet–sillimanite UHT gneisses at Tuguiwula. LA‐ICP‐MS U–Pb dating of metamorphic zircon in the UHT metapelites yields mean 207Pb/206Pb ages of c. 1.92 Ga (two samples), which are interpreted to record the timing of cooling of the UHT rocks to the solidus. The UHT metamorphism is interpreted to have been generated by mantle upwelling and emplacement of mafic magmas within a post‐orogenic setting.  相似文献   

2.
The Jining Group occurs as the eastern segment of the Khondalite Belt, North China Craton and is dominated by a series of granulite facies rocks involving ‘normal’ pelitic granulites recording peak temperatures of ~850 °C and ultrahigh‐temperature (UHT) pelitic granulites recording peak temperatures of 950–1100 °C. The PT paths and ages of these two types of granulites are controversial. Three pelitic granulite samples in the Jining Group comprising two sillimanite–garnet gneiss samples (J1208 and J1210) and one spinel–garnet gneiss sample (J1303) were collected from Zhaojiayao, where ‘normal’ pelitic granulites occur, for determination of their metamorphic evolution and ages. Samples J1208 and J1210 are interpreted to record cooling paths from the Tmax stages with PT conditions respectively of ~870–890 °C/7–8 kbar and >840 °C/>7.5 kbar constrained from the stability fields of the observed mineral assemblages and the isopleths of plagioclase, garnet and biotite compositions in pseudosections. Sample J1303 is interpreted to record pre‐Tmax decompression from the kyanite‐stability fields to the Tmax stage of 950–1020 °C/8–9 kbar and a post‐Tmax cooling path revealed mainly from the stability field of the observed mineral assemblage, the plagioclase zoning and the biotite composition isopleth in pseudosections. The post‐Tmax cooling stage can be divided into suprasolidus and subsolidus stages. The suprasolidus cooling may not result in an equilibrium state at the solidus in a rock. Therefore, different minerals may record different PT conditions along the cooling path; the inferred maximum temperature is commonly higher than the solidus as well as different solidi being recorded for different samples from the same outcrop but experiencing different degrees of melt loss. Plagioclase compositions, especially its zoning in plagioclase‐rich granulites, are predicted to be useful for recording the higher temperature conditions of a granulite's thermal history. The three samples studied seem to record the temperature range covering those of the ‘normal’ and UHT pelitic granulites in the Jining Group, suggesting that UHT conditions may be reached in ‘normal’ granulites without diagnostic UHT indicators. LA‐ICP‐MS zircon U–Pb data provide a continuous trend of concordant 207Pb/206Pb ages from 1.89 to 1.79 Ga for sample J1210, and from 1.94 to 1.80 Ga for sample J1303. These continuous and long age spectrums are interpreted to represent a slow cooling and exhumation process corresponding to the post‐Tmax cooling PT paths recorded by the pelitic granulites, which may have followed the exhumation of deeply buried rocks in a thickened crust region resulted from a collision event at c. 1.95 Ga as suggested by the pre‐Tmax decompression PT path.  相似文献   

3.
The time‐scales and P–T conditions recorded by granulite facies metamorphic rocks permit inferences about the geodynamic regime in which they formed. Two compositionally heterogeneous cordierite–spinel‐bearing granulites from Vizianagaram, Eastern Ghats Province (EGP), India, were investigated to provide P–T–time constraints using petrography, phase equilibrium modelling, U–Pb geochronology, the rare earth element composition of zircon and monazite, and Ti‐in‐zircon thermometry. These ultrahigh temperature (UHT) granulites preserve discrete compositional layering in which different inferred peak assemblages are developed, including layers bearing garnet–sillimanite–spinel, and others bearing orthopyroxene–sillimanite–spinel. These mineral associations cannot be reproduced by phase equilibrium modelling of whole‐rock compositions, indicating that the samples became domainal on a scale less than that of a thin section, even at UHT conditions. Calculation of the P–T stability fields for six compositional domains within which the main rock‐forming minerals are considered to have attained equilibrium suggests peak metamorphic conditions of ~6.8–8.3 kbar at ~1,000°C. In most of these domains, the subsequent evolution resulted in the growth of cordierite and final crystallization of melt at an elevated (residual) H2O‐undersaturated solidus, consistent with <1 kbar of decompression. Concordant U–Pb ages obtained by SHRIMP from zircon (spread 1,050–800 Ma) and monazite (spread 950–800 Ma) demonstrate that crystallization of these minerals occurred during an interval of c. 250 Ma. By combining LA‐ICP‐MS U–Pb zircon ages with Ti‐in‐zircon temperatures from the same analysis sites, we show that the crust may have remained above 900°C for a minimum of c. 120 Ma between c. 1,000 and c. 880 Ma. Overall, the results suggest that, in the interval 1,050 to 800 Ma, the evolution of the Vizianagaram granulites culminated with UHT conditions from c. 1,000 Ma to c. 880 Ma, associated with minor decompression, before further zircon crystallization at c. 880–800 Ma during cooling to the solidus. However, these rocks are adjacent to the Paderu–Anantagiri–Salur crustal block to the NW that experienced counterclockwise P–T–t paths, and records similar UHT peak metamorphic conditions (7–8 kbar, ~950°C) followed by near‐isobaric cooling, and has a similar chronology during the Neoproterozoic. The limited decompression inferred at Vizianagaram may be explained by partial exhumation due to thrusting of this crustal block over the adjacent Paderu–Anantagiri–Salur crustal block. The residual granulites in both blocks have high concentrations of heat‐producing elements and likely remained hot at mid‐crustal depths throughout a period of relative tectonic quiescence in the interval 800–550 Ma. During the Cambrian Period, the EGP was located in the hinterland of the Denman–Pinjarra–Prydz orogen. A later concordant population of zircon dated at 511 ± 6 Ma records crystallization at temperatures of ~810°C. This age may record a low‐degree of melting due to limited influx of fluid into hot, weak crust in response to convergence of the Crohn craton with a composite orogenic hinterland comprising the Rayner terrane, EGP, and cratonic India.  相似文献   

4.
The P–T–t path of high‐P metamorphic rocks in subduction zones may reveal valuable information regarding the tectonic processes along convergent plate boundaries. Herein, we present a detailed petrological, pseudosection modelling and radiometric dating study of several amphibole schists of oceanic affinity from the Lhasa Block, Tibet. The amphibole schists experienced an overall clockwise P–T path that was marked by post‐Pmax heating–decompression and subsequent isothermal decompression following the attainment of peak high‐P and low‐T conditions (~490°C and 1.6 GPa). Pseudosection modelling shows that the amphibole schists underwent water‐unsaturated conditions during prograde metamorphism, and the stability field of the assemblage extends to lower temperatures and higher pressures within the water‐unsaturated condition relative to water‐saturated model along the prograde path. The high‐P amphibole schists were highly reduced during retrograde metamorphism. Precise evaluation of the ferric iron conditions determined from the different compositions of epidote inclusions in garnet and matrix epidote is crucial for a true P–T estimate by garnet isopleth thermobarometry. Lu–Hf isotope analyses on garnet size separates from a garnet‐bearing amphibole schist yield four two‐point garnet–whole‐rock isochron ages from 228.2 ± 1.2 Ma to 224.3 ± 1.2 Ma. These Lu–Hf dates are interpreted to constrain the period of garnet growth and approximate the timing of prograde metamorphism because of the low peak metamorphic temperature of the rock and the well‐preserved Mn/Lu growth zoning in garnet. The majority of zircon U–Pb dates provide no constraints on the timing of metamorphism; however, two concordant U–Pb dates of 222.4 ± 3.9 Ma and 223.3 ± 4.2 Ma were obtained from narrow and uncommon metamorphic rims. Coexistence of zircon and sphene in the samples implies that the metamorphic zircon growth was likely assisted by retrogression of rutile to sphene during exhumation. The near coincident radiometric dates of zircon U–Pb and garnet Lu–Hf indicate rapid burial and exhumation of the amphibole schists, suggesting a closure time of c. 224–223 Ma for the fossil ocean basin between the northern and southern Lhasa blocks.  相似文献   

5.
The island of Seram, part of the northern limb of the Banda Arc in eastern Indonesia, exposes an extensive Mio‐Pliocene granulite facies migmatite complex (the Kobipoto Complex) comprising voluminous leucosome‐rich diatexites and scarcer Al–Fe‐rich residual granulites. The migmatites are intimately associated with ultramafic rocks of predominantly lherzolitic composition that were exhumed by substantial lithospheric extension beneath low‐angle detachment faults; heat supplied by the lherzolites was evidently a major driver for the granulite facies metamorphism and accompanying anatexis. Residual garnet–sillimanite granulites sampled from the Kobipoto Mountains, central Seram, contain scarce garnet‐hosted inclusions of hercynite spinel (~1.5 wt% ZnO) + quartz (± ilmenite) in direct grain‐boundary contact – an assemblage potentially indicative of metamorphism under ultrahigh‐temperature (UHT) conditions. thermocalc ‘Average PT’ reactions and melanosome‐specific thermocalc , TMO, and PT pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical system, supported by Ti‐in‐garnet thermobarometry, are permissive of the rock having experienced a clockwise PT path peaking at 925 °C and 9 kbar – thus narrowly reaching UHT conditions – before undergoing near‐isothermal decompression to ~750 °C and ~4 kbar. Spinel + quartz assemblages are interpreted to have formed at or just after the metamorphic peak from localized reactions between sillimanite, ilmenite and surrounding garnet. Further decompression of the rock resulted in the formation of complex reaction microstructures comprising cordierite ± plagioclase coronae around garnet, and symplectic intergrowths of cordierite + spinel + ilmenite around sillimanite. Small grains of sapphirine + corundum developed subsequently within spinel by localized quartz‐absent reactions. The post‐peak evolution of the granulites may be related to previously published U–Pb zircon and 40Ar/39Ar ages of c. 16 Ma, further substantiating the claim for the Kobipoto Complex granulites having recorded Earth's youngest‐identified episode of UHT metamorphism, albeit at slightly lower temperature and higher pressure than previously inferred. The Kobipoto Complex granulites demonstrate how UHT conditions may be achieved in the ‘modern’ Earth by extreme lithospheric extension, which, in this instance, was driven by slab rollback of the Banda Arc.  相似文献   

6.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

7.
The Cretaceous Yuhuashan igneous complex contains abundant xenoliths of high‐grade metamorphic rocks, with the assemblage garnet ± hypersthene + biotite + plagioclase + K‐feldspar + quartz. The biotite in these samples has high TiO2 (>3.5%), indicating high‐T metamorphism (623–778 °C). P–T calculations for two felsic granulites indicate that the peak metamorphism took place at 880–887 °C and 0.64–0.70 GPa, in the low pressure/high temperature (LP‐HT) granulite facies. Phase equilibrium modelling gives equilibrium conditions for the peak assemblage of a felsic granulite of >0.6 GPa and >840 °C, consistent with the P–T calculations, and identifies an anticlockwise P–T–t path. LA‐ICPMS U–Pb dating of metamorphic and detrital zircon from one xenolith reveals that the granulite facies metamorphism took place at 273.6 ± 2.2 Ma, and the protolith was a sedimentary rock deposited later than 683 Ma. This represents the first Late Palaeozoic (Variscan) granulite facies event identified in the South China Block (SCB). Coupled with other geological observations, the LP‐HT metamorphic conditions and anticlockwise P–T–t path suggest that Variscan metamorphism probably occurred in a post‐orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of mantle‐derived magma. Based on P–T estimates and the comparison of the protolith composition with mid‐ to low‐grade metamorphic rocks in the area, it is suggested that the mid‐lower crust under the Xiangshan–Yuhuashan area consists mainly of these felsic granulites and gneisses, whose protoliths were probably subducted to these depths during the Early Palaeozoic orogeny in the SCB, and underwent two episodes of metamorphism during Early Palaeozoic and Late Palaeozoic time.  相似文献   

8.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

9.
We report the discovery of osumilite in ultrahigh‐temperature (UHT) metapelites of the Anosyen domain, southern Madagascar. The gneisses equilibrated at ~930°C/0.6 GPa. Monazite and zircon U–Pb dates record 80 Ma of metamorphism. Monazite compositional trends reflect the transition from prograde to retrograde metamorphism at 550 Ma. Eu anomalies in monazite reflect changes in fO2 relative to quartz–fayalite–magnetite related to the growth and breakdown of spinel. The ratio Gd/Yb in monazite records the growth and breakdown of garnet. High rates of radiogenic heat production were the primary control on metamorphic grade at the regional scale. The short duration of prograde metamorphism in the osumilite gneisses (<29 ± 8 Ma) suggests that a thin mantle lithosphere (<80 km) or advective heating may have also been important in the formation of this high‐T, low‐P terrane.  相似文献   

10.
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ).  相似文献   

11.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

12.
Testing the fidelity of thermometers at ultrahigh temperatures   总被引:1,自引:0,他引:1  
A highly residual granulite facies rock (sample RG07‐21) from Lunnyj Island in the Rauer Group, East Antarctica, presents an opportunity to compare different approaches to constraining peak temperature in high‐grade metamorphic rocks. Sample RG07‐21 is a coarse‐grained pelitic migmatite composed of abundant garnet and orthopyroxene along with quartz, biotite, cordierite, and plagioclase with accessory rutile, ilmenite, zircon, and monazite. The inferred sequence of mineral growth is consistent with a clockwise pressure–temperature (PT) evolution when compared with a forward model (PT pseudosection) for the whole‐rock chemical composition. Peak metamorphic conditions are estimated at 9 ± 0.5 kbar and 910 ± 50°C based on conventional Al‐in‐orthopyroxene thermobarometry, Zr‐in‐rutile thermometry, and calculated compositional isopleths. U–Pb ages from zircon rims and neocrystallized monazite grains yield ages of c. 514 Ma, suggesting that crystallization of both minerals occurred towards the end of the youngest pervasive metamorphic episode in the region known as the Prydz Tectonic Event. The rare earth element compositions of zircon and garnet are consistent with equilibrium growth of these minerals in the presence of melt. When comparing the thermometry methods used in this study, it is apparent that the Al‐in‐orthopyroxene thermobarometer provides the most reliable estimate of peak conditions. There is a strong textural correlation between the temperatures obtained using the Zr‐in‐rutile thermometer––maximum temperatures are recorded by a single rutile grain included within orthopyroxene, whereas other grains included in garnet, orthopyroxene, quartz, and biotite yield a range of temperatures down to 820°C. Ti‐in‐zircon thermometry returns significantly lower temperature estimates of 678–841°C. Estimates at the upper end of this range are consistent with growth of zircon from crystallizing melt at temperatures close to the elevated (H2O undersaturated) solidus. Those estimates, significantly lower than the calculated temperature of this residual solidus, may reflect isolation of rutile from the effective equilibration volume leading to an activity of TiO2 that is lower than the assumed value of unity.  相似文献   

13.
Osumilite is reported in Palaeoproterozoic Al–Mg‐rich granulites from the Khanfous area (Tekhamalt, In Ouzzal, Hoggar, Algeria). The main peak assemblages are osumilite + sapphirine + biotite + orthopyroxene + sillimanite and osumilite + orthopyroxene + sillimanite + quartz ± biotite (±K‐feldspar) in silica‐deficient and silica‐saturated granulites respectively. Osumilite coexists with F‐rich biotite (XF ≈ 0.6). The observed microstructures, the mass balance of metamorphic reactions and P–T pseudosections modelled for bulk‐rock and reaction‐microdomain compositions indicate a clockwise P–T metamorphic evolution at ultrahigh temperatures, without substantial post‐peak deformation. The peak P–T conditions recorded by the osumilite‐bearing assemblages are 8.5–9.0 kbar and 930–980 °C. During retrogression, osumilite was partially or totally replaced by fine‐grained pseudomorphs of cordierite + orthopyroxene + K‐feldspar + quartz at ~7 kbar and ~850 °C. This study confirms that osumilite can occur only in Mg‐rich metamorphic rocks that experienced ultrahigh‐temperature metamorphism under anhydrous conditions. In the presence of a hydrous fluid, it is replaced, even at high temperatures, by cordierite‐bearing assemblages. This important feature explains the rarity of osumilite in granulite facies rocks and its common replacement by cordierite + orthopyroxene + K‐feldspar + quartz pseudomorphs. The peak conditions suggest that a delamination of the lithospheric mantle underneath the In Ouzzal crust brought the asthenosphere close to the Mohorovi?i? discontinuity.  相似文献   

14.
The Fuping Complex is one of the important basement terranes within the central segment of the Trans‐North China Orogen (TNCO) where mafic granulites are exposed as boudins within tonalite–trondhjemite–granodiorite (TTG) gneisses. Garnet in these granulites shows compositional zoning with homogeneous cores formed in the peak metamorphic stage, surrounded by thin rims with an increase in almandine and decrease in grossular contents suggesting retrograde decompression and cooling. Petrological and phase equilibria studies including pseudosection calculation using thermocalc define a clockwise P–T path. The peak mineral assemblages comprise garnet+clinopyroxene+amphibole+quartz+plagioclase+K‐feldspar+ilmenite±orthopyroxene±magnetite, with metamorphic P–T conditions estimated at 8.2–9.2 kbar, 870–882 °C (15FP‐02), 9.6–11.3 kbar, 855–870 °C (15FP‐03) and 9.7–10.5 kbar, 880–900 °C (15FP‐06) respectively. The pseudosections for the subsequent retrograde stages based on relatively higher H2O contents from P/T–M(H2O) diagrams define the retrograde P–T conditions of <6.1 kbar, <795 °C (15FP‐02), 5.6–5.8 kbar, <795 °C (15FP‐03), and <9 kbar, <865 °C (15FP‐06) respectively. Data from LA‐ICP‐MS zircon U–Pb dating show that the mafic dyke protoliths of the granulite were emplaced at c. 2327 Ma. The metamorphic zircon shows two groups of ages at 1.96–1.90 Ga (peak at 1.93–1.92 Ga) and 1.89–1.80 Ga (peak at 1.86–1.83 Ga), consistent with the two metamorphic events widely reported from different segments of the TNCO. The 1.93–1.92 Ga ages are considered to date the peak granulite facies metamorphism, whereas the 1.86–1.83 Ga ages are correlated with the retrograde event. Thus, the collisional assembly of the major crustal blocks in the North China Craton (NCC) might have occurred during 1.93–1.90 Ga, marking the final cratonization of the NCC.  相似文献   

15.
In the Orlica‐?nie?nik complex at the NE margin of the Bohemian Massif, high‐pressure granulites occur as isolated lenses within partially migmatized orthogneisses. Sm–Nd (different grain‐size fractions of garnet, clinopyroxene and/or whole rock) and U–Pb [isotope dilution‐thermal ionization mass spectrometry (ID‐TIMS) single grain and sensitive high‐resolution ion microprobe (SHRIMP)] ages for granulites, collected in the surroundings of ?ervený D?l (Czech Republic) and at Stary Giera?tów (Poland), constrain the temporal evolution of these rocks during the Variscan orogeny. Most of the new ages cluster at c. 350–340 Ma and are consistent with results previously reported for similar occurrences throughout the Bohemian Massif. This interval is generally interpreted to constrain the time of high‐pressure metamorphism. A more complex evolution is recorded for a mafic granulite from Stary Giera?tów and concerns the unknown duration of metamorphism (single, short‐lived metamorphic cycle or different episodes that are significantly separated in time?). The central grain parts of zircon from this sample yielded a large spread in apparent 206Pb/238U SHRIMP ages (c. 462–322 Ma) with a distinct cluster at c. 365 Ma. This spread is interpreted to be indicative for variable Pb‐loss that affected magmatic protolith zircon during high‐grade metamorphism. The initiating mechanism and the time of Pb‐loss has yet to be resolved. A connection to high‐pressure metamorphism at c. 350–340 Ma is a reasonable explanation, but this relationship is far from straightforward. An alternative interpretation suggests that resetting is related to a high‐temperature event (not necessarily in the granulite facies and/or at high pressures) around 370–360 Ma, that has previously gone unnoticed. This study indicates that caution is warranted in interpreting U–Pb zircon data of HT rocks, because isotopic rejuvenation may lead to erroneous conclusions.  相似文献   

16.
Dehydration and anatexis of ultrahigh‐pressure (UHP) metamorphic rocks during continental collision are two key processes that have great bearing on the physicochemical properties of deeply subducted continental crust at mantle depths. Determining the time and P–T conditions at which such events take place is needed to understand subduction‐zone tectonism. A combined petrological and zirconological study of UHP metagranite from the Sulu orogen reveals differential behaviours of dehydration and anatexis between two samples from the same UHP slice. The zircon mantle domains in one sample record eclogite facies dehydration metamorphism at 236 ± 5 Ma during subduction, exhibiting low REE contents, steep MREE–HREE patterns without negative Eu anomalies, low Th, Nb and Ta contents, low temperatures of 651–750 °C and inclusions of quartz, apatite and jadeite. A second mantle domain records high‐T anatexis at 223 ± 3 Ma during exhumation, showing high REE contents, steeper MREE–HREE patterns with marked negative Eu anomalies, high Hf, Nb, Ta, Th and U contents, high temperatures of 698–879 °C and multiphase solid inclusions of albite + muscovite + quartz. In contrast, in a second sample, one zircon mantle domain records limited hydration anatexis at 237 ± 3 Ma during subduction, exhibiting high REE contents, steep MREE–HREE patterns with marked negative Eu anomalies, high Hf, Nb, Ta, Th and U contents, medium temperatures of 601–717 °C and multiphase solid inclusions of albite + muscovite + hydrohalite. A second mantle domain in this sample records a low‐T dehydration metamorphism throughout the whole continental collision in the Triassic, showing low REE contents, steep MREE–HREE patterns with weakly negative Eu anomalies, low Th, Nb and Ta contents, low temperatures of 524–669 °C and anhydrite + gas inclusions. Garnet, phengite and allanite/epidote in these two samples also exhibit different variations in texture and major‐trace element compositions, in accordance with the zircon records. The distinct P–T–t paths for these two samples suggest separate processes of dehydration and anatexis, which are ascribed to the different geothermal gradients at different positions inside the same crustal slice during continental subduction‐zone metamorphism. Therefore, the subducting continental crust underwent variable extents of dehydration and anatexis in response to the change in subduction‐zone P–T conditions.  相似文献   

17.
Some mafic granulites in the Sanggan area of the northern Trans‐North China Orogen (TNCO) have a relatively simple mineralogy with low energy grain shapes that are compatible with an assumption of equilibrium, but the rock‐forming minerals show variations in composition that create challenges for thermobarometry. The mafic granulites, which occur as apparently disrupted dyke‐like bodies in tonalite–trondhjemite–granodiorite gneisses, are divided into two types based on petrography and chemical composition. Type 1 mafic granulites are fine‐ to medium‐grained with an equilibrated texture and an assemblage of plagioclase+clinopyroxene+garnet+magnetite+ilmenite and sometimes minor hornblende±orthopyroxene. Type 2 mafic granulites are coarse‐grained and hornblende bearing with a peak assemblage of garnet+clinopyroxene+plagioclase+hornblende and variably developed coronae and symplectites of plagioclase+hornblende+orthopyroxene partially replacing porphyroblastic garnet±clinopyroxene. SIMS U–Pb dating of metamorphic zircon from two type 1 mafic granulites yields metamorphic ages of c. 1.84 and 1.83 Ga, consistent with published ages of the type 2 mafic granulites. Based on phase equilibrium modelling, we use the common overlap of P–T fields defined by the mineral assemblage limits, and the mole proportion and composition isopleths of different minerals in each sample to quantify the metamorphic conditions. For type 1 granulites, overlap of the mineral proportion and composition fields for each of three samples yields similar P–T conditions of 710–880°C at 0.57–0.79 GPa, 820–850°C at 0.59–0.63 GPa and 800–860°C at 0.59–0.68 GPa. For the type 2 granulites, overlaying the peak assemblage fields for three samples yields common P–T conditions of 870–890°C at 1.1–1.2 GPa. For the retrograde assemblage, overlap of the mineral proportion and composition fields for each sample yields similar P–T conditions of 820–840°C at 0.85–0.88 GPa, 860–880°C at 0.83–0.86 GPa and 880–930°C at 0.89–0.95 GPa. The PT conditions appear distinct between the two types of mafic granulite, with the mineralogically simple type 1 mafic granulites recording the lowest pressures. However, there are significant uncertainties associated with these results. For the granulites, there are uncertainties related to the determination of modes and composition of the equilibration volume, particularly estimation of O and H2O contents, and in the phase equilibrium modelling there are uncertainties that propagate through the calculation of mole proportions and mineral compositions. The compound uncertainties on pressure and temperature for high‐T granulites are large and the results of our study show that it may be unwise to rely on PT conditions determined from the simple intersection of calculated mineral composition isopleths alone. Since the samples in this study are from a limited area—a few hundred square metres—we infer that they record a single PT path involving both decompression and cooling. However, there is no evidence of the high‐P granulite facies event at 1.93–1.90 Ga that is recorded elsewhere in the TNCO, which suggests that the precursor basic dykes were emplaced late during the assembly of the North China Craton.  相似文献   

18.
We present results of study of mineral assemblages and PT-conditions of metamorphism of mafic garnet–two-pyroxene and two-pyroxene granulites in the Early Precambrian metamorphic complex of the Angara–Kan terrane as well as the U–Pb age and trace-element and Lu–Hf isotope compositions of zircon from these rocks and the zircon/garnet REE distribution coefficients. The temperatures of metamorphism of two-pyroxene granulites are estimated as 800–870 to ~ 900 °C. Mafic garnet–two-pyroxene granulites contain garnet coronas formed at 750–860 °C and 8–9.5 kbar. The formation of the garnet coronas proceeded probably at the retrograde stage during cooling and was controlled by the rock composition. The age (1.92–1.94 Ga) of zircon cores, which retain the REE pattern typical of magmatic zircon, can be taken as the minimum age of protolith for the mafic granulites. The metamorphic zircon generation in the mafic granulites is represented by multifaceted or soccerball crystals and rims depleted in Y, MREE, and HREE compared to the cores. The age of metamorphic zircon in the garnet–two-pyroxene (~ 1.77 Ga) and two-pyroxene granulites (~ 1.85 and 1.78 Ga) indicates two episodes of high-temperature metamorphism. The presence of one generation (1.77 Ga) of metamorphic zircon in the garnet–two-pyroxene granulites and, on the contrary, the predominance of 1.85 Ga zircon in the two-pyroxene granulites with single garnet grains suggest that the formation of the garnet coronas proceeded at the second stage of metamorphism. The agreement between the zircon/garnet HREE distribution coefficients and the experimentally determined values at 800 °C suggests the simultaneous formation of ~ 1.77 Ga metamorphic zircon and garnet. Zircon formation by dissolution/reprecipitation or recrystallization in a closed system without exchange with the rock matrix is confirmed by the close ranges of 176Hf/177Hf values for the core and rims. The positive εHf values (up to + 6.2) for the zircon cores suggest that the protolith of mafic granulites are derived from depleted-mantle source. The first stage of metamorphism of the mafic granulites and paragneisses of the Kan complex (1.85–1.89 Ga) ended with the formation of collisional granitoids (1.84 Ga). The second stage (~ 1.77 Ga) corresponds to the intrusion of the second phase of subalkalic leucogranites of the Taraka pluton and charnockites (1.73–1.75 Ga).  相似文献   

19.
In this paper, U‐Pb zircon, monazite and rutile data for crystalline rocks deposited as clasts in the Upper Viséan conglomerates at the eastern margin of the Bohemian Massif are reported. U‐Pb data of spherical zircon from three different granulite clasts yielded a mean age of 339.0 ± 0.7 Ma (±2σ), while oval and spherical grains of another granulite pebble define a slightly younger date of 337.1 ± 1.1 Ma. These ages are interpreted as dating granulite facies metamorphism. Thermochronology and the derived pressure–temperature (P–T) path of the granulite pebbles reflect two‐stage exhumation of the granulites. Near‐to‐isothermal decompression from at least 44 km to mid‐crustal depths of around 22 km was followed by a near‐isobaric cooling stage based on reaction textures and geothermobarometry. Minimum average exhumation rate corresponds to 2.8–4.3 mm year?1. The extensive medium‐pressure/high‐temperature overprint on granulite assemblages is dated by U‐Pb in monazite at c. 333 Ma. This thermal event probably has a close link to generation and emplacement of voluminous Moldanubian granites, including the cordierite granite present in clasts. This granite was emplaced at mid‐crustal levels at 331 ± 3 Ma (U‐Pb monazite), whereas the U‐Pb zircon ages record only a previous magmatic event at c. 378 Ma. Eclogites and garnet peridotites normally associated with high‐pressure granulites are absent in the clasts but exotic subvolcanic and volcanic members of the ultrapotassic igneous rock series (durbachites) of the Bohemian Massif have been found in the clasts. It is therefore assumed that the clasts deposited in the Upper Viséan conglomerates sampled a structurally higher tectonic unit than the one that corresponds to the present denudation level of the Moldanubicum of the Bohemian Massif. The strong medium‐temperature overprint on granulites dated at c. 333 Ma is attributed to the relatively small size of the entirely eroded bodies compared with the presently exposed granulites.  相似文献   

20.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号