首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avi Gafni  Yechiel Zohar 《水文研究》2007,21(16):2164-2173
The bio‐drainage–commercial forestry strategy was applied in five plots in the Yizre'el Valley, northern Israel, to evaluate the hydrological and salinity impacts of eucalypt plantations. Each plot contained a mix of 11 selected eucalyptus species/ecotypes. Two plots (Nahalal and Genigar), representing the two extreme waterlogging/salinity conditions in the valley, were selected for in‐depth monitoring over a 10‐year period to assess the likely environmental improvement through bio‐drainage. Despite impressive growth rates of genetically improved Eucalyptus camaldulensis in the year‐round waterlogged, slightly saline Nahalal site (650 mm annual rainfall), the water uptake by the trees was insufficient to control the rising water table caused by excessive water inputs, both natural and human. In the more saline, alkaline and drier Genigar plot (450 mm annual rainfall), where rainfall is the only water input, the ground water dropped to below 3 m from soil surface in the fourth year after planting, i.e. deeper than the adjacent ground water levels. Both sites showed appreciable rise in wells that penetrated the 3‐ to 4‐m confining layer. The 10‐year salinity (EC) trend of the top layer in Nahalal varied because the drainage was limited by the positive water balance and the above‐average spells of dry winters. In and below the 4 m deep layer the EC remained below 1·5 dS m?1 throughout the entire 10‐year study. The last EC measurement, taken in 2003, showed values not higher than 4 dS m?1 throughout the 6 m soil profile. In Genigar, there was significant leaching of salts from the top layer (1 m) during the 9‐year monitoring period, but recently a salts ‘bulge’ was gradually developed in the 1–5 m strata indicating that the expected downward movement of leached salts was impeded by the 3–4 m deep low‐permeability clayey layer that lies over a coarser, far more conductive and notably confined layer, which leads to a perched water body. The last EC measurement at the end of 2003 showed a maximum value of 5·5 dS m?1 at 3 m depth. No signs of tree stress were observed in either site, at any soil depth during the 10 years of monitoring. Theoretical considerations do not support the hypothesis that there would be a fatal long‐term accumulation of salts in the root zone. The Israeli experience has shown that the bio‐drainage technique can effectively lower a shallow water table and reverse salinity trends, provided that the overall water balance is negative, i.e. that the water inputs match the water use by the tree plantation and local drainage characteristics. However, the rate of improvement of the hydraulic, salinity, sodicity and soil physical properties is site specific. Excess fresh water inputs into the plantation, although they create waterlogging conditions, supply unlimited water to the trees, which, in turn, show exceptional growth rates, with usable commercial value. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
An experiment on evapotranspiration from citrus trees under irrigation with saline waterwas carried out for 4 months. Two lysimeters planted with a citrus tree in the green house wereused. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. Theapplied irrigation water was 1.2 times that of the evapotranspiration on the previous day.Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes.The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows.(i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. Theevapotranspiration returns to normal after leaching. However it takes months to exhaust the saltfrom the tree. ( ii ) To estimate the impact of irrigation with saline water on the evapotranspirationfrom citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment.Evapotranspiration under irrigation with saline water (ETs) can be calculated from evapotranspira-tion under irrigation with freshwater (ET) by the equation ETs = Ks× ET. Ks can be expressed as afunction of ECsw. (iii) The critical soil-water electrical conductivity (ECsw) is 9.5 dS/m, beyondwhich adverse effects on evapotranspiration begin to appear. If ECsw can be controlled at below9.5 dS/m, saline water can be safely used for irrigation.  相似文献   

3.
This paper investigates the hybrid technology of electrokinetics (EK) coupled with bioremediation (Bio) in the removal of pyrene (PYR) in a soil matrix. Five different treatments were conducted to investigate the coupling interactions between EK and Bio on PYR degradation. A simulated removal curve was obtained by combining the degradation curves in EK‐ and Bio‐only experiments. The results show that the simulated curve fitted well with the actual degradation curve in electro‐bioremediation (EK‐Bio) experiments for the first 30 days of the experiment, while at later stages a discrepancy was found. This discrepancy was caused by adverse effects of low soil pH (3.6) near the anode on bacteria health during EK treatments. With polarity reversal (PR) to control the soil pH, the simulated curve fitted very well (r > 0.99) with the actual degradation curve during the whole treatment period. At the end of the experiment, PYR removal amounted to 63% with EK‐Bio treatments in PR electric fields, which was 1.7 times that of Bio‐only. Moreover, the bacteria counts under electric fields were more than that without EK. The spatial distributions of PYR degradation and bacterial counts were also investigated. The results show that they were both higher nearer the electrodes under PR electric fields.  相似文献   

4.
Remediation of the sites contaminated with organic contaminants, such as chlorobenzenes, remains a challenging issue. Electroosmotic flushing can be a promising approach which is based on mechanism of electrokinetic remediation for removal of organic contaminants from fluids in low‐permeability soil. To select an optimum surfactant that can effectively enhance electroosmotic flushing, three common surfactants, Triton X‐100 (EK2), Tween 80 (EK3), and a mixture of sodium dodecyl sulfate and Triton X‐100 (EK4) buffered with Na2HPO4/NaH2PO4 solution, were tested. The efficiency of each kind of surfactant was evaluated using a three‐dimensional box filled with a clayey soil spiked with 1,2,4‐trichlorobenzene, and compared with a test (EK1) without surfactant. The results demonstrated that the buffer solutions efficiently neutralized H+ and OH? produced by electrolysis. EK3 with Tween 80 added in the flushing solution reached the highest electroosmotic permeability of 10?4 cm2/v/s and achieved a notably high cumulative electroosmotic flow (EOF) of 5067 mL within 6 d, which was 6.3, 3.4, and 4.2 times higher than that in EK1, EK2, and EK4, respectively. There were 420 mL more cumulative EOF obtained after 50 h of electrical application in EK4 than in EK2. The introduction of nonreactive ions can increase the current, thereby benefiting the EOF. Both the higher pH caused by the buffer and the application of nonionic surfactants can make the zeta potential more negative, thereby increasing the EOF. Tween 80 can be recommended as the best flushing solution for removing organic contaminants from sites when electrokinetic remediation is applied.  相似文献   

5.
An experiment on evapotranspiration from citrus trees under irrigation with saline water was carried out for 4 months. Two lysimeters planted with a citrus tree in the green house were used. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. The applied irrigation water was 1.2 times that of the evapotranspiration on the previous day. Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes. The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows. (i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. The evapotranspiration returns to normal after leaching. However it takes months to exhaust the salt from the tree. (ii) To estimate the impact of irrigation with saline water on the evapotranspiration from citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment. Evapotranspiration under irrigation with saline water (ET s ) can be calculated from evapotranspiration under irrigation with freshwater (ET) by the equationET s =K s × ET. Ks can be expressed as a function ofEC sw . (iii) The critical soil-water electrical conductivity (EC sw ) is 9.5 dS/m, beyond which adverse effects on evapotranspiration begin to appear. IfEC sw can be controlled at below 9.5 dS/m, saline water can be safely used for irrigation.  相似文献   

6.
Soil salinity and sodicity is considered one of the most import impediments to agricultural development in Northeast China. The contents of TP and TK decrease with soil depth and high coefficients of variation were found in TOC, AN, and AP. Mean EC in the 0–50 cm soil layers ranged from 0.61 to 0.89 dS m?1 and the average soluble ion concentrations in the topsoil (0–10 cm) were approximately 11.38 mmol L?1 for Na+, 1.21 mmol L?1 for Ca2+, and 0.40 mmol L?1 for Mg2+. High SAR existed in the layers 10–50 cm, indicating the studied soil was bearing low salinity in the top layer and high sodic layer in the subsurface. The soil presented strong alkali reactions all through the profile with pH over 9.5. To improve and utilize saline sodic soil rationally, several strategies were put forward based on long‐term field studies and demonstration works. The results implied that ameliorating with sand, applying farm yard manure, regenerating salt tolerant grasses and leaching with groundwater, and growing rice were effective measures for improving physical and chemical qualities of saline sodic soil.  相似文献   

7.
1,4‐Dioxane is totally miscible in water, sequestering in vadose pore water that can serve as a source of long‐term groundwater contamination. Although some 1,4‐dioxane is removed by conventional soil vapor extraction (SVE), remediation is typically inefficient. SVE efficiency is hindered by low Henry’s Law constants at ambient temperature and redistribution to vadose pore water if SVE wells pull 1,4‐dioxane vapors across previously clean soil. It was hypothesized that heated air injection and more focused SVE extraction (“Enhanced SVE” or XSVE) could increase the efficiency of 1,4‐dioxane vadose treatment, and this new process was tested at former McClellan Air Force Base, CA. The XSVE system had four peripheral heated air injection wells surrounding a 6.1 m × 6.1 m × 9.1 m deep treatment zone with a central vapor extraction well. After 14 months of operation, soil temperatures reached as high as ~90 °C near the injection wells and the treatment zone was flushed with ~20,000 pore volumes of injected air. Post‐treatment sampling results showed reductions of ~94% in 1,4‐dioxane and ~45% in soil moisture. Given the simplicity of the remediation system components and the promising demonstration test results, XSVE has the potential to be a cost‐effective remediation option for vadose zone soil containing 1,4‐dioxane.  相似文献   

8.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

9.
The assessment of seismic design codes has been the subject of intensive research work in an effort to reveal weak points that originated from the limitations in predicting with acceptable precision the response of the structures under moderate or severe earthquakes. The objective of this work is to evaluate the European seismic design code, i.e. the Eurocode 8 (EC8), when used for the design of 3D reinforced concrete buildings, versus a performance‐based design (PBD) procedure, in the framework of a multi‐objective optimization concept. The initial construction cost and the maximum interstorey drift for the 10/50 hazard level are the two objectives considered for the formulation of the multi‐objective optimization problem. The solution of such optimization problems is represented by the Pareto front curve which is the geometric locus of all Pareto optimum solutions. Limit‐state fragility curves for selected designs, taken from the Pareto front curves of the EC8 and PBD formulations, are developed for assessing the two seismic design procedures. Through this comparison it was found that a linear analysis in conjunction with the behaviour factor q of EC8 cannot capture the nonlinear behaviour of an RC structure. Consequently the corrected EC8 Pareto front curve, using the nonlinear static procedure, differs significantly with regard to the corresponding Pareto front obtained according to EC8. Furthermore, similar designs, with respect to the initial construction cost, obtained through the EC8 and PBD formulations were found to exhibit different maximum interstorey drift and limit‐state fragility curves. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This study deals with the reliability of monitoring the transition zone between fresh and saline waters in coastal aquifers, considering the effect of tides in long‐perforated boreholes. Electric conductivity (EC) fluctuations in the coastal aquifer of Israel, as measured in long‐perforated borehole, were found to have the same periodicities as the sea tide, though some orders of magnitude larger than sea‐level or groundwater level fluctuations. Direct measurements in the aquifer through buried EC sensors demonstrate that EC measurements within the long‐perforated boreholes might be distorted due to vertical flow in the boreholes, whereas actual fluctuations of the transition zone within the aquifer are some orders of magnitude smaller. Considering these field data, we suggest that monitoring of the transition zone between fresh and saline water adjacent to the sea through long‐perforated boreholes is unreliable. EC fluctuations in short‐perforated boreholes (1 m perforation at the upper part of the transition zone) were somewhat larger than in the aquifer, but much smaller than those in the long‐perforated borehole. The short‐perforation diminishes the vertical flow and the distortion and therefore is more reliable for monitoring the transition zone in the shoreline vicinity.  相似文献   

12.
Sanghyun Kim 《水文研究》2012,26(22):3434-3447
The vertical and lateral profiles of temporal variations in soil moisture are important for understanding the hydrological process along hillside transects. In this study, relationships among measured soil moistures were explored to configure the hydrological contributions of different flowpaths. All the measured soil moistures included a common stochastic structure because rainfall, the hydrometeological driver, is the main factor that determines the soil moisture response feature, and the infiltration process through the topsoil at a shallow depth is also common in all measured soil moisture histories. Therefore, the relationships between the measured series are also affected by both rainfall and topsoil infiltration. The common stochastic structure of the soil moisture series was removed via a prewhitening procedure. A systematic analysis procedure is presented to delineate the exclusive causal relationships among multiple soil moisture measurements. A monitoring system based on multiplexed time domain reflectometry was used to obtain soil moisture time series along two transects on a steep hillslope during the rainy season. The application of the proposed method for monitoring points in two adjacent locations provided 8, 12, 14, and 13, 16, 22 causal relationships for vertical, lateral in parallel, and diagonal directions, respectively, along the two transects. The point‐based contributions of the internal flowpath can be evaluated as the correlation is normalized in the context of inflow and outflow. The hydrological processes in the soil layer, vertical flow, lateral flow, downslope recharge, and return flow were quantified, and the relative importance of each hydrological component was determined to improve our understanding of the hydrological processes along the two transects of the study area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Concentrations of chloride in excess of State of New Hampshire water‐quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I‐93) in southern New Hampshire. A proposed widening plan for I‐93 has raised concerns over further increases in chloride. As part of this effort, road‐salt‐contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base‐flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven‐streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of one‐dimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride‐enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

14.
The fate of the steroid hormones 17 β‐estradiol, estrone, estriol, 16 α‐hydroxyestrone, and β‐estradiol 17‐acetate, the hormone‐conjugates β‐estradiol 3‐sulfate and estrone 3‐sulfate, and the oral contraceptives 17 α‐ethinylestradiol and mestranol were studied during wastewater treatment as wastewater treatment plants are the major source contamination of urban surface waters with steroid hormones. The elimination efficiencies of three different concepts of WWTPs, i. e., activated sludge versus trickling filter, were compared over four weeks at different weather conditions. While larger WWTPs operating on activated sludge eliminated hormones more constantly than smaller WWTPs, heavy rainfall events led to a collapse of the elimination efficiency. By using trickling filter techniques for the treatment of wastewater an elimination of the steroid hormones could not be observed. Additionally, mass flows on a per person basis are compared. In the three experiments, which ran continuously for four weeks each, it turned out that the concentrations of ethinylestradiol and mestranol were below 6 ng/L in all samples. The inflow concentrations were 70 to 82 ng/L (estrone), 17 to 44 ng/L (estradiol), 61 to 130 ng/L (hydroxyestrone), 189 to 255 ng/L (estriol), 10 to 17 ng/L (estrone‐3‐sulfate) and about 28 ng/L (estradiol‐3‐ sulfate). While in the activated sludge treatment plants the elimination of estrone was 90 and 50%, respectively, estrone was formed from precursors in the trickling filter plant. A similar situation occurred for 17β‐estradiol, estrone 3‐sulfate, and estradiol 3‐sulfate. Hydroxyestrone was eliminated with similar efficiencies in all wastewater treatment plants (64 to 82%), as well as estriol (34 to 69%). Accordingly, the emissions of the wastewater treatment plants differed largely and were not attributed to the size of the respective plant, only.  相似文献   

15.
To supplement conventional geophysical log data, this study presents temporal variations in electrical conductivity (EC) and temperature with depth in a multilayered coastal aquifer, on the eastern part of Jeju Island, Korea. One‐month time‐series data obtained at eight points from a multi‐depth monitoring system showed that semidiurnal and semimonthly tidal variations induced dynamic fluctuations in EC and temperature. At some depths, EC ranged from 1483 to 26 822 µS cm?1, while some points showed no significant variations. The results of EC log and time‐series data revealed that a sharp fresh‐saltwater interface occurred at low tide, but the diffusion zone broadened to 20 m at high tide. EC, temperature, and tide level data were used for the cross‐correlation analysis. The response time of EC and temperature to tide appears to range from less than 30 min to 11 h. Using end‐member mixing analysis (EMMA), the fraction of variations of chloride concentration in the multilayered aquifer was explained, and a conceptual model was developed which subdivided the coastal aquifer into four vertical zones. The percentage of water derived from seawater varied from 2 to 48 at specific depth, owing to tidal fluctuations. Continuous observations of EC and temperature at multiple depths are powerful tools for quantifying the transport of saline water by tidal variations in multilayered coastal aquifers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The microbial transformation of typical tar oil compounds such as acridine, benzo(b)thiophene, dibenzofuran, indane, and indene under different redox conditions was investigated in microcosm studies. Under aerobic conditions the inherent contamination in polluted soil as well as the added N‐, S‐, O‐ heterocyclic and homocyclic compounds were transformed predominantly apart from thiophene. 1‐Indanone was detected by RP‐HPLC‐DAD and GC‐MS as an intermediate metabolite from indane and indene. Under nitrate and sulfate reducing conditions indane, benzo(b)thiophene, and dibenzofuran were transformed in assays with the polluted soil samples from well B 65 and B 66 within 426 days, whereas they were persistent in assays with the highly polluted soil B 67. All heterocyclic and homocyclic compounds added to the non‐contaminated soil from well B 85 were not degraded under nitrate and sulfate reducing conditions, too. The results indicate that for the decision, wether natural attenuation can be implemented in the remediation of contaminated site, in addition to BTEX and PAHs especially the fate of further tar oil compounds in anoxic aquifers has to be considered.  相似文献   

17.
Nonaqueous phase liquid (NAPL)‐impacted lower permeability layers in heterogeneous media are difficult to fully remediate and can act as persistent sources of groundwater contamination through diffusive emissions to transmissive aquifer zones. This work investigated the benefits of partial remediation involving treatment focused near the high‐low permeability interface, with the performance metric being emissions reduction. A sequential base‐activated persulfate (S2O8 2?) delivery treatment strategy was studied in this work, involving 13–14 d deliveries of 10% w/w sodium persulfate (Na2S2O8) and 14–28 d deliveries of 19 g/L sodium hydroxide (NaOH). Treatment and control experiments were conducted in 1.2‐m wide × 1.2‐m tall × 5‐cm thick physical model tanks containing two soil layers differing in hydraulic conductivity by three orders of magnitude. The top 10 cm of the lower permeability layers contained 7400–7800 mg‐NAPL/kg‐soil; the NAPL was comprised of benzene, toluene, ethylbenzene, p‐xylene, o‐xylene, n‐propylbenzene, and 1,3,5‐trimethylbenzene (TMB) mixed in octane. Approximately 0.1 g‐Na2S2O8 was delivered per cm2‐interface area over 13–14 d. The S2O8 2? and SO4 2? concentration profiles suggest higher oxidant reaction rates when NaOH is delivered prior to, rather than after Na2S2O8. After 264 d and two treatments, hydrocarbon emissions from the NAPL source were reduced by 60% to 73% compared to a no‐treatment control tank. The incremental benefit of the second treatment was only about 10% of the effect of the first treatment.  相似文献   

18.
The effect of nutrient and surfactant addition on the biodegradation of phenanthrene was studied in a batch scale soil–slurry system using isolated Mycoplana sp. MVMB2strain. The study was conducted using an artificially phenanthrene spiked and as well as contaminated soil from petrochemical industrial site. Maximum phenanthrene degradation and subsequent high microbial growth were observed at optimum pH (pH 6) and C/N/P ratio (100:20:3). To investigate maximum substrate degradation potential of Mycoplana sp. MVMB2, very high concentrations of phenanthrene (50–200 mg/kg soil) were used. The organism was capable of degrading >60% for a concentration below 20 mg/kg soil and >40% for concentrations up to 200 mg/kg within 8 days. Further the influence of five different surfactants namely Span 80, Tween 20, Triton X‐100, cetyl trimethyl ammonium bromide, and sodium dodecyl sulfate were tested at their critical micelle concentration (CMC) levels for phenanthrene degradation in the soil. The addition of surfactant enhanced the biodegradation and a maximum of 84.49% was obtained for Triton X‐100. Complete phenanthrene degradation by Mycoplana sp. MVMB2 was observed at 3 CMC concentration of Triton X‐100. The optimized parameters obtained were used for the degradation of phenanthrene present in the contaminated soil and 98.6% biodegradation was obtained. Thus, the results obtained in the study suggested that biodegradation of phenanthrene by Mycoplana sp. MVMB2 appeared to be feasible to remediate phenanthrene rich contaminated sites.  相似文献   

19.
Mechanistic models have been proposed for soil piping and internal erosion on well‐compacted levees and dams, but limited research has evaluated these models in less compacted (more erodible) soils typical of hillslopes and streambanks. This study utilized a soil box (50 cm long, 50 cm wide and 20 cm tall) to conduct constant‐head, soil pipe and internal erosion experiments for two soils (clay loam from Dry Creek and sandy loam from Cow Creek streambanks) packed at uniform bulk densities. Initial gravimetric moisture contents prior to packing were 10, 12 and 14% for Dry Creek soil and 8, 12, and 14% for Cow Creek soil. A 1‐cm diameter rod was placed horizontally along the length of the soil bed during packing and carefully removed after packing to create a continuous soil pipe. A constant head was maintained at the inflow end. Flow rates and sediment concentrations were measured from the pipe outlet. Replicate submerged jet erosion tests (JETs) were conducted to derive erodibility parameters for repacked samples at the same moisture contents. Flow rates from the box experiments were used to calibrate the mechanistic model. The influence of the initial moisture content was apparent, with some pipes (8% moisture content) expanding so fast that limited data was collected. The mechanistic model was able to estimate equivalent flow rates to those observed in the experiments, but had difficulty matching observed sediment concentrations when the pipes rapidly expanded. The JETs predicted similar erodibility coefficients compared to the mechanistic model for the more erodible cases but not for the less erodible cases (14% moisture content). Improved models are needed that better define the changing soil pipe cross‐section during supply‐ and transport‐limited internal erosion, especially for piping through lower compacted (more erodible) soils as opposed to more well‐compacted soils resulting from constructing levees and dams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Salinization of a fresh palaeo-ground water resource by enhanced recharge   总被引:2,自引:0,他引:2  
Deterioration of fresh ground water resources caused by salinization is a growing issue in many arid and semi-arid parts of the world. We discuss here the incipient salinization of a 10(4) km2 area of fresh ground water (<3,000 mg/L) in the semiarid Murray Basin of Australia caused by widespread changes in land use. Ground water 14C concentrations and unsaturated zone Cl soil water inventories indicate that the low salinity ground water originated mainly from palaeo-recharge during wet climatic periods more than 20,000 years ago. However, much of the soil water in the 20 to 60 m thick unsaturated zone throughout the area is generally saline (>15,000 mg/L) because of relatively high evapotranspiration during the predominantly semiarid climate of the last 20,000 years. Widespread clearing of native vegetation over the last 100 years and replacement with crops and pastures leads to enhancement of recharge rates that progressively displace the saline soil-water from the unsaturated zone into the ground water. To quantify the impact of this new hydrologic regime, a one-dimensional model that simulates projected ground water salinities as a function of depth to ground water, recharge rates, and soil water salt inventory was developed. Results from the model suggest that, in some areas, the ground water salinity within the top 10 m of the water table is likely to increase by a factor of 2 to 6 during the next 100 years. Ground water quality will therefore potentially degrade beyond the point of usefulness well before extraction of the ground water exhausts the resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号