首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pHpzc values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first‐order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5–10 µg/L) can be achieved by these particles. These low‐cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification.  相似文献   

2.
This study aims to examine the efficiency of Opuntia ficus‐indica for removing organochlorine pesticides from surface waters. Adsorption properties such as size, dose, and time of O. ficus‐indica for aldrin, dieldrin, and dichlorodiphenyltrichloroethane (DDT) were studied through stirring and column methods. Because of their high affinity and swelling characteristics, dried O. ficus‐indica was studied in stirring while fresh unpeeled O. ficus‐indica was applied in both stirring and column experiments and proved to be well‐suited to column application. Before removing pesticides, the column was flashed with distilled water eliminate the turbidity and smell from fresh unpeeled cactus. The removal of pesticides increased with an increasing adsorbent dose and decreased with adsorbent particle sizes. The optimum adsorbent dose is 10 g for dried and 15 g for fresh unpeeled O. ficus‐indica. The experimental results show that O. ficus‐indica possesses strong adsorption ability for aldrin, dieldrin, and DDT, and the adsorption isotherm data obeyed the Freundlich model. The results of our small‐scale experiments suggest a strong potential to develop local small‐scale water treatment units that can be used at the level of individual households or local communities, using a widely available adsorbent.  相似文献   

3.
To remove nitro aromatic compounds (NACs) from 2,4,6‐trinitrotoluene (TNT) red water, large‐pore‐size (pore size = 200 nm) polystyrene (PSt) microspheres were activated with chloroacetyl chloride followed by reaction with 1,2‐ethanediamine (EDA). Fourier transform IR analyses showed that the amino group was introduced onto PSt microspheres. Determination of the total amino group and primary amino densities suggested that the imino group was the functional group of EDA–PSt. Scanning electron microscope images and mercury porosimetry measurements indicated that the pore structure was well maintained during the reaction. After adsorption with EDA–PSt, 98.5% chemical oxygen demand and 99% acute toxicity of TNT red water was removed. As shown by HPLC and GC–MS, all the neutral and acid NACs in TNT red water were removed by EDA–PSt, while the basic NACs were not. The results showed that hydrogen bonding and electrostatic attraction were involved in adsorption. The adsorbed neutral and acid NACs were eluted using methanol and 0.1 mol L?1 NaOH, respectively.  相似文献   

4.
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.  相似文献   

5.
The adsorption performance of β‐ionone on four types of granular activated carbon (GAC) in water was investigated through batch experiments. The effect of initial β‐ionone concentrations and natural organic matter (NOM) adsorbed on GAC, adsorption kinetic and isothermal models were also studied. The results showed that four types of GAC all had good adsorption performance for β‐ionone, the equilibrium adsorption amount of the GAC employed was in the order of YK > GK > MZ‐A > MZ‐B. The adsorption amount increased with increasing initial concentrations. The presence of NOM could reduce adsorption of β‐ionone to a certain extent, and small molecular weight (MW) fractions (particularly <1000 Da) exhibited a remarkably competitive effect on the adsorption of β‐ionone. The experimental data showed good correlation with pseudo‐first‐order model. Furthermore, adsorption of β‐ionone on GAC fitted Freundlich, Langmuir, and Tempkin isotherms in the range of experimental concentrations, but followed Freundlich isothermal model most appropriate. The thermodynamic parameters were calculated by the results of the experiment, which showed adsorption of β‐ionone on GAC as being endothermic and spontaneous.  相似文献   

6.
In the present work, biosorption of Cr(VI) by Nymphaea rubra was investigated in batch studies. Batch experiments were conducted to study the effect of initial sorbent dosage, solution pH and initial Cr(VI) concentration. The results showed that the equilibrium uptake capacity was increased with decrease in biomass dosage. The Cr(VI) removal was influenced by the initial chromium compound concentration. Langmuir and Freundlich adsorption isotherm models were used to represent the equilibrium data. The Freundlich isotherm model was fitted very well with the equilibrium data when compared to Langmuir isotherm model. The sorption results were analyzed for pseudo‐first order and pseudo‐second order kinetic model. It was observed that the kinetic data fitted very well with the pseudo‐second order rate equation when compared to the pseudo‐first order rate equation. Fourier transform infrared spectrum showed the presence of different functional groups in the biomass. The surface morphology of the sorbent was exemplified by SEM analysis. Aquatic weeds seem to be a promising biosorbent for the removal of chromium ions from water environment. This paper reports the research findings of a laboratory‐based study on the removal of Cr(VI) from the synthetic solution using the dried stem of N. rubra as a biosorbent.  相似文献   

7.
8.
The lignite coal researched by this study was subjected to a two‐stage activation process performed in the scope of obtaining active carbon from domestic resources. “Activation” and “carbonization” stages were used in the experiments. The modified lignite was produced by impregnating lignite with KOH and washing the activation product with 15% HCl solution after thermal treatment. Increasing KOH dosage also increased the removal efficiency. The variables investigated in adsorption experiments were contact time, initial concentration, pH, and sorbent dosage. Adsorption kinetics was fitted by using the pseudo‐first‐order equation, pseudo‐second‐order equation, and intra‐particle diffusion. Isotherm modeling was carried out using Langmuir, Freundlich, and Dubinin–Radushkevich equations. Selected target compound in this work is common environmental pollutant in waters. A commonly known effect of chloroform is its carcinogenic effect. Therefore, removal of these compounds from water is considerably important. Chloroform removal of 97% for was achieved by the use of Konya region activated lignite.  相似文献   

9.
Batch sorption technique was carried out for the removal of anionic dye Congo red (CR) from aqueous solution using raw rectorite (R‐REC) and organified rectorite (CTA+‐REC) modified by cetyltrimethylammonium bromide (CTAB) as adsorbents. The effects of organification degree of CTA+‐REC as well as the process parameters including the pH of dye solution, sorption time, and initial dye concentration on adsorption capacity for CR were investigated and the sorption kinetics was also evaluated. The results showed that the sorption behaviors of R‐REC and CTA+‐REC for CR followed pseudo‐second‐order kinetic model and the sorption equilibrium data perfectly obeyed the Langmuir isotherm. The thermodynamic parameters including entropy of sorption (ΔS0), enthalpy of sorption (ΔH0), and Gibbs free energy of sorption (ΔG0) were obtained and analyzed. Fourier transform infrared study revealed that a chemisorption process occurred between CR and CTA+‐REC. REC modified by cationic surfactants showed the higher adsorption capacities for CR compared to R‐REC and in theory would be used as an efficient and promising adsorbent for the removal of anionic dyes in wastewater treatment.  相似文献   

10.
A separation procedure was developed for analysis of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in urban air, while simultaneously eliminating the interfering compounds. This was carried out by optimization of a column chromatograph with regard to the eluent type (n‐hexane and n‐pentane), volume of eluent, type of sorbent material (silica gel and florisil) and activation level of the sorbent material. The determination of the level of PCBs and PAHs was carried out using gas chromatography (GC) equipped with a mass selective detector (MSD), while determination of the OCPs was carried out by GC equipped with an electron capture detector (μ‐ECD). The use of a silica gel column (10 g, 5% deactivated with H2O) with 70 mL of n‐hexane gave satisfactory separation of PCBs from PAHs and OCPs. After collecting the PCBs with 70 mL of n‐hexane, 3·20 mL of n‐hexane:ethyl acetate, (1:1, v:v) was adequate for elution of the PAHs and OCPs from the column. The primary aim of this study was to develop a multimethod for analyses of PCBs, PAHs, and OCPs in urban air as well as reducing solvent and sorbent consumption and analysis time during the clean‐up procedure compared to the US EPA standard methods (EPA methods TO‐13A for PAHs and TO‐4A for both PCBs and OCPs).  相似文献   

11.
In this study, the adsorption of reactive red 120 (RR 120) on pistachio husk, and the modeling of the adsorption was investigated. Characterization of the pistachio husk was confirmed by Fourier transform infrared spectroscopy. The pHzpc of pistachio husk was found to be pH 8.5. Increasing the initial pH value decreased (p < 0.01) the amount of dye adsorbed. However, increasing the initial dye concentration from 50 to 900 mg/L at pH 1 increased (p < 0.01) the equilibrium dye uptake from 20.83 to 182.10 mg/g. Results indicated that this adsorbent had great potential for the removal of RR 120 dye. The logistic model was found to be the most suitable of the kinetic and equilibrium models tested to describe the adsorption of the dye. The parameters determined from the logistic model were well correlated with the initial dye concentration, and were seen to increase with the increasing initial dye concentration, but this was not observed from pseudo‐second order kinetics.  相似文献   

12.
A magnetic‐sulfonic graphene nanocomposite (G‐SO3H/Fe3O4) was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. It was used for removal of three cationic dyes: safranine T (ST), neutral red (NR), victoria blue (VB), and three anionic dyes: methyl orange, brilliant yellow, and alizarin red, from environmental water. The experimental conditions were optimized, including pH, amount of adsorbent, adsorption kinetics, adsorption isotherms, ionic strength, etc. The results show that G‐SO3H/Fe3O4 can adsorb cationic dyes more efficiently and selectively than anionic dyes at pH 6.0. In the first 10 min of adsorption time, more than 93% of the cationic dyes were removed by the sorbent. Adsorption kinetics follow the pseudo‐second‐order kinetic model well. The adsorption isotherm coincided with Langmuir and Freundlich adsorption models. The maximum adsorption capacities of G‐SO3H/Fe3O4 for ST, NR, and VB dyes were 199.3, 216.8, and 200.6 mg g?1. The adsorbed cationic dyes were eluted by using different pH values of ethanol as the solvent. The established method was simple, sensitive, and rapid, and was suitable for the adsorption of cationic dyes in environmental water.  相似文献   

13.
Adsorption of reactive black 5 (RB5) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Adsorption data obtained from different batch experiments were modeled using both pseudo first‐ and second‐order kinetic equations. The equilibrium adsorption data were fitted to the Freundlich, Tempkin, and Langmuir isotherms over a dye concentration range of 45–100 µmol/L. The best results were achieved with the pseudo second‐order kinetic and Langmuir isotherm equilibrium models, respectively. The equilibrium adsorption capacity (qe) was increased with increasing the initial dye concentration and solution temperature, and decreasing solution pH. The chitosan flakes for the adsorption of the dye was regenerated efficiently through the alkaline solution and was then reused for dye removal. The activation energy (Ea) of sorption kinetics was estimated to be 13.88 kJ/mol. Thermodynamic parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were evaluated by applying the van't Hoff equation. The thermodynamics of reactive dye adsorption by chitosan indicates its spontaneous and endothermic nature.  相似文献   

14.
The present study describes an electrocoagulation process for the removal of iron from drinking water using magnesium as the anode and galvanized iron as the cathode. Experiments were carried out as a function of pH, temperature and current density. The adsorption capacity was evaluated using both the Langmuir and the Freundlich isotherm models. The results show that the maximum removal efficiency of 98.4% was achieved at a current density of 0.06 A dm–2, at a pH of 6.0. The adsorption of iron was better explained by fitting the Langmuir adsorption isotherm, which suggests a monolayer coverage of adsorbed molecules. The adsorption process followed a second‐order kinetics model. Temperature studies showed that adsorption was endothermic and spontaneous in nature.  相似文献   

15.
This paper discusses about the adsorption of metal ions such as Cu(II), Cd(II), Zn(II), and Ni(II) from aqueous solution by sulfuric acid treated cashew nut shell (STCNS). The adsorption process depends on the solution pH, adsorbent dose, contact time, initial metal ions concentration, and temperature. The adsorption kinetics was relatively fast and equilibrium was reached at 30 min. The adsorption equilibrium follows Langmuir adsorption isotherm model. The maximum adsorption capacity values of the modified cashew nut shell (CNS) for metal ions were 406.6 mg/g for Cu(II), 436.7 mg/g for Cd(II), 455.7 mg/g for Zn(II), and 456.3 mg/g for Ni(II). The thermodynamic study shows the adsorption of metal ions onto the STCNS was spontaneous and exothermic in nature. The kinetics of metal ions adsorption onto the STCNS followed a pseudo‐second‐order kinetic model. The external mass transfer controlled metal ions removal at the earlier stages and intraparticle diffusion at the later stages of adsorption. A Boyd kinetic plot confirms that the external mass transfer was the slowest step involved in the adsorption of metal ions onto the STCNS. A single‐stage batch adsorber was designed using the Langmuir adsorption isotherm equation.  相似文献   

16.
The mixtures of dried sewage sludge (DSS) and sewage sludge ash were studied for removal of acid red 119 (AR119) dye as a new, more environmental friendly, and low cost adsorbent. For this purpose, response surface methodology was applied to optimize the dye removal efficiency and turbidity of treated dye solutions as two individual responses. Results revealed that an optimum condition under specified constraints (dye removal efficiency >95% and turbidity <50 NTU) was obtained at a contact time of 60 min, 40 wt% DSS in the mixture, an initial pH of 6, and an initial dye concentration of 200 mg dye/L in distilled water. Under the optimal condition, dye removal efficiency of 94.98% and effluent turbidity of 24.9 NTU was observed. In further studies, at optimum condition, the effect of some additives on adsorption process and desorption/reusability of adsorbent was investigated. It was observed that removal efficiency was significantly decreased to 83.76% when a simulated dye wastewater (containing the selected dye, acetic acid, and Glauber's salt dissolved in tap water) was used. Desorption studies revealed that AR119 dye could be well removed from dye‐loaded adsorbent by 0.3 M NaOH solution.  相似文献   

17.
This study investigated the removal of two model pharmaceutically active compounds (PhAcs), viz., ibuprofen and triclosan, in lab‐scale engineered floodplain filtration (EFF) system. Biodegradation experiments were performed to acquire knowledge about the degradation of the targeted PhAcs, at an initial concentration of 350 µg/L. Biodegradation results showed that the two compounds were bio‐transformed to >70% after 15 days of incubation. Column tests were performed in a statistically significant manner to determine the adsorptive potential of the suggested filler layer in the EFF (C/C0), by varying the flow rate and initial concentration of the compound. It was observed based on the F and p‐values that the main effects (F = 3163, p < 0.005) were more significant than the interactive effects (F = 9561, p < 0.05) for both ibuprofen and triclosan removal. Besides, by performing the Student's “t” test, it was concluded that the flow rate plays a major role in determining the rapidness of achieving complete breakthrough than the initial concentration of both the compounds. The data obtained from column studies under biotic conditions indicated that the removal mechanism for PhAcs is mainly biotransformation based, and that an EFF system may be effectively used to remove these emerging compounds during ground water recharge for water recycling.  相似文献   

18.
Dispersive liquid–liquid microextraction based on solidification of floating organic droplet (DLLME‐SFO) technique was successfully applied for simultaneous assay of eight polychlorinated biphenyls, two organochlorine, and four pyrethroid pesticides multi‐residue in aqueous samples by using GC‐electron capture detection. The effects of various parameters such as kind of extractant and dispersant and volume of them, extraction time, effect of salt addition, and pH were optimized. As a result, 5.0 µL 1‐dodecanol was chosen as extraction solvent, 600 µL methanol were used as dispersive solvent without salt addition, pH was adjusted to 7. Under the optimized conditions, the limits of detection (LOD) were ranged from 1.4 to 8.3 ng L?1. Satisfactory linear range was observed from 5.0 to 2000 ng L?1 with correlation coefficient better than 0.9909. Good precisions were also acquired with RSD better than 13.6% for all target analytes. The enrichment factors of the method were ranged from 786 to 1427. The method can be successfully applied to simultaneous separation and determination of three class residues in real water samples and good recoveries were obtained ranging from 76 to 130, 73 to 129, and 78 to 130% for tap water, lake water, and industrial waste water, respectively.  相似文献   

19.
Batch adsorption experiments were carried out using nonliving biomass of Porphyra yezoensis Ueda (red alga) for the removal of Congo red from aqueous solutions at 25°C. The effects of process parameters such as contact time, adsorbent concentration and ionic strength were investigated. The raw biomass and Congo red loaded biomass were characterized by Fourier transform infrared spectroscopy (FTIR). The pseudo first order, pseudo second order and intraparticle diffusion models were tested. The results showed that adsorption of Congo red followed pseudo second order kinetics very well. Langmuir and Freundlich equations were applied to the data related to the adsorption isotherms, and the observed maximum adsorption capacities (qm) were 71.46 mg/g at 25°C. Adsorbent concentration and ionic strength had a marked effect on Congo red adsorption.  相似文献   

20.
A new method for determining lead (Pb) content was developed by dispersive liquid–liquid microextraction based on the solidification of floating organic droplets followed by flame atomic absorption spectrometry. Under optimum conditions, the calibration graph was linear within the Pb content range of 8.43–400 µg L?1 with a detection limit of 2.53 µg L?1. The relative standard deviation for 10 replicate measurements of 20 and 400 µg L?1 of Pb were 3.41 and 2.78%, respectively. The proposed method was assessed through the analysis of certified reference water and recovery experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号