首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundances of major and trace elements were determined for the Tertiary volcanic rocks from SW Hokkaido. The Late Miocene to Pliocene volcanic rocks of this region show geochemical features similar to those of the Quaternary rocks, that is, K/Si, Th/Si and LREE/HREE ratios increasing across the arc, east to west, from the Pacific to the Japan Sea side. In contrast, the Early Miocene volcanic rocks, which are geographically restricted to the Japan Sea coast, are distinct from all later volcanics and show “within-plate” characteristics — in particular, high concentrations of HFS elements. The Quaternary basalts have low Hf/Yb ratios and Hf contents, whereas the Early Miocene basalts are high in Hf/Yb and Hf, similar to Hawaiian alkali basalts. The compositional variation with time may result from the progressive depletion of incompatible HFS elements in the mantle source. Th/Yb ratios increase from Early Miocene to Quaternary, possibly reflecting increase in the LIL element contribution to the mantle source during that time.  相似文献   

2.
In central Japan, the Pacific plate subducts westward beneath the Eurasian plate and the Philippine Sea plate subducts northwestward into the mantle wedge between the Eurasian plate and the subducted Pacific slab. There, the Northeast Japan arc is joined to the Izu-Ogasawara arc. We determined 87Sr/86Sr ratios and Rb and Sr contents for 47 volcanic rock samples from 15 Quaternary volcanoes in central Japan and summarized the geographical distribution of the ratios. The general trend of slowly increasing 87Sr/86Sr ratio from the back-arc side toward the volcanic front in the Northeast Japan arc is broken by a marked high ratio (above 0.7060) centered around Akagi volcano located at the southernmost region of the arc. Elsewhere, the ratio along the volcanic front in this arc varies within the range 0.7038 to 0.7045. The marked high 87Sr/86Sr ratio is considered to be due to the addition of slab-derived components transported by the Philippine Sea plate to the magma-generating region in the mantle wedge beneath central Japan. Therefore, the geographical distribution of the high ratio may correspond to that of the Philippine Sea slab-derived components in the mantle wedge and we may draw the underground outline of the Philippine Sea plate. This outline implies that an aseismic portion of the Philippine Sea plate continues a few tens km ahead of the seismic one. A belt of low 87Sr/86Sr ratios from the Izu Peninsula northwestward along the northern end of the Izu-Ogasawara arc coincides with the zone where the subducting Philippine Sea plate is not observed seismologically, while it is detected seismologically on both sides of the belt.  相似文献   

3.
In the Northeast Japan arc, a number of Quaternary volcanoes form a long, narrow belt, parallel to the Japan Trench. 87Sr/86Sr ratios were determined in 52 specimens of volcanic rocks from 27 volcanoes in the Northeast Japan arc area. The results reveal that the ratios change systematically in space. Decreasing 87Sr/86Sr ratios across the arc were confirmed over a wide area of Northeast Japan. In the same direction, increases in both Rb and Sr contents were also found. The regular trends are considered to be a strong constraint for elucidation of subduction-originated magma genesis at the Eurasia plate vs. Pacific plate boundary. In the northern region of the Northeast Japan arc, 87Sr/86Sr ratios in volcanic rocks along the volcanic front were almost constant (0.7038–0.7045) and slightly higher than those from the Izu-Ogasawara arc (0.7032–0.7038). This suggests that “interactions” between the Eurasia plate and the Pacific plate, and those between the Philippine Sea plate and the Pacific plate are slightly different. The southern region of the Northeast Japan arc, where the direction of the volcanic front bends from southward to westward, showed anomalously high 87Sr/86Sr ratios, reaching to 0.7077. This region coincides with the triple junction of the Eurasia, Pacific and Philippine Sea plates, suggesting “anomalous interaction” at the triple junction.  相似文献   

4.
Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary.Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites.Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent.Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. PossiblePalaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW.Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites.Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160–210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in Java. These anomalies may arise because Sumatra — being underlain by continental crust — is more akin to destructive continental margins than typical island-arcs such as E Java or Bali, and because the Sumatran subduction zone has a peculiar structure due to the oblique approach of the subducting plate. A further anomaly — an E-W belt of small centres along the back-arc coast — may relate to an incipient S-dipping subduction zone N of Sumatra and not the main NE-dipping zone to its W. Correlation of the Tertiary volcanism with the present tectonic regime is hazardous, but the extensive W coastal volcanism (which includes rather alkaline lavas) is particularly anomalous in relation to the shallow depth (<100 km) of the present subduction zone. The various outcrops may owe their present locations to extensive fault movements (especially along the SFS), to the peculiar structure of the fore-arc (suggested by equally anomalous Sn- and W-bearing granitic batholiths also along the W coast), or they may not be subduction-related at all.  相似文献   

5.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

6.
The Aegean volcanic arc formed in response to northeasterly subduction of the Mediterranean sea floor beneath the Aegean Sea. The active arc lies over 250 km from the Hellenic Trench in a region which has suffered considerable extension and subsidence since the mid-Tertiary. Suites of samples from the different volcanic centres making up the arc have been studied geochemically in order to assess lateral variations and to constrain the contribution of crustal contamination and sediment subduction in their petrogenesis.Lavas from all the major volcanic centres exhibit typical calc-alkaline major-element characteristics, and show enrichment in light REE and LIL elements but low contents of HFS elements. The enrichment in light REE is greater in the eastern (Nisyros, Kos) and western (Milos, Poros, Methana, Aegina) sectors of the arc (Cen/Ybn=4) than in the central Santorini sector (Cen/Ybn=2). All lavas have significant negative Eu anomalies and many have slight negative Ce anomalies. Less coherence is observed in the abundances and ratios of the other LIL elements, compared with the REE, along the island chain.Whereas the effects of crystal fractionation are evident in the trace-element patterns of lavas from individual islands, and are particularly well marked for Santorini, it is clear that there are consistent differences in trace-element abundances and ratios in the lavas of the various islands which reflect compositional differences in the mantle source and/or in melting conditions. Lavas from the eastern and western sectors have much higher levels of Ba and Sr but relatively lower Th, K and Rb than those from Santorini. Although some geochemical features could be explained through involvement of a component of subducted sediment in the source regions of the volcanoes, other element abundances and ratios indicate that this component must be very small. Detailed consideration of the inter-island geochemical variations suggests a complex make-up of the underlying lithosphere, resulting from a long history of subduction. In the region of Santorini, where crustal stretching is greatest, the underlying asthenosphere may be involved in magma production.  相似文献   

7.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

8.
Abstract To understand the characteristics of long‐term spatial and temporal variation in volcanism within a volcanic arc undergoing constant subduction since the cessation of back‐arc opening, a detailed investigation of middle Miocene to Quaternary volcanism was carried out within the Chokai‐Kurikoma area of the Northeast Japan Arc. This study involved a survey of available literature, with new K–Ar and fission track dating, and chemical analyses. Since 14 Ma, volcanism has occurred within the Chokai‐Kurikoma area in specific areas with a ‘branch‐like’ pattern, showing an east–west trend. This is in marked contrast to the widespread distribution of volcanism with a north–south trend in the 20–14 Ma period. The east–west‐ trending ‘branches’ are characterized by regular intervals (50–100 km) of magmatism along the arc. These branches since 14 Ma are remarkably discrepant to the general northwest–southeast or north‐northeast–south‐southwest direction of the crustal structures that have controlled Neogene to Quaternary tectonic movements in northeast Japan. In addition, evidence indicating clustering and focusing of volcanism into smaller regions since 14 Ma was verified. Comparison of the distribution and chemistry of volcanic rocks for three principal volcanic stages (11–8, 6–3 and 2–0 Ma) revealed that widely but sparsely distributed volcanic rocks had almost the same level of alkali and incompatible element concentrations throughout the area (with the exception of Zr) in the 11–8 Ma stage. However, through the 6–3 Ma stage to the 2–0 Ma stage, the concentration level in the back‐arc cluster increased, while that in the volcanic front cluster remained almost constant. Therefore, the degree of partial melting has decreased, most likely with a simultaneous increase in the depth of magma segregation within the back‐arc zone, whereas within the volcanic front zone, the conditions of magma generation have changed little over the three stages. In conclusion, the evolution of the thermal structure within the mantle wedge across the arc since 14 Ma has reduced the extent of ascending mantle diapirs into smaller fields. This has resulted in the tendency for the distribution of volcanism to become localized and concentrated into more specific areas in the form of clusters from the late Miocene to Quaternary.  相似文献   

9.
Volcanic history and tectonics of the Southwest Japan Arc   总被引:1,自引:0,他引:1  
Abstract Remarkable changes in volcanism and tectonism have occurred in a synchronous manner since 1.5–2 Ma at the junction of the Southwest Japan Arc and the Ryukyu Arc. Although extensive volcanism occurred in Kyushu before 2 Ma, the subduction-related volcanism started at ca 1.5 Ma, forming a NE–SW trend volcanic front, preceded by significant changes in whole-rock chemistry and mode of eruptions at ca 2 Ma. The Median Tectonic Line has intensified dextral motion since 2 Ma, with a northward shift of its active trace of as much as 10 km, accompanied by the formation of rhomboidal basins in Central Kyushu. Crustal rotation and incipient rifting has also occurred in South Kyushu and the northern Okinawa Trough over the past 2 million years. We emphasize that the commencement age of these events coincides with that of the transition to the westward convergence of the Philippine Sea plate, which we interpret as a primary cause of these synchronous episodes. We assume that the shift in subduction direction led to an increase of fluid component contamination from subducted oceanic slab, which then produced island-arc type volcanism along the volcanic front. Accelerated trench retreat along the Ryukyu Trench may have caused rifting and crustal rotation in the northern Ryukyu Arc.  相似文献   

10.
Abstract Arc volcanic activity on opposite sides of the Pacific Ocean (Japan and Central America) has been investigated by examining the number of volcanic ash layers recorded in Neogene and Quaternary deep-sea sediments. The data suggest that ash layers counted in deep-sea sediments may provide a reliable record of arc volcanism. The study is based on a quantitative analysis of arc volcanic activity using cores collected on DSDP (Deep-Sea Drilling Project) and ODP (Ocean Drilling Program) legs. Five distinct parameters which might affect ash distribution in marine sediments were reviewed: nature of the eruption, wind influence, settling conditions, diagenesis, and plate motion. Of these five, past atmospheric circulation was the most significant. The main constraint on the analysis is that temporal scattering of ash is not directly related to wind pattern variations. Results of this analysis are correlated with dating of terrestrial volcanic sequences. Although marine tephra records for individual regions reveal minor differences in the episodes of volcanic activity, a general correlation exists between activity of arc volcanism in Japan and in Central America. Two important pulses of arc volcanism occurred during Middle Miocene times (18–13 Ma) and Plio-Quaternary times (5–0 Ma). These episodes of intense volcanism are separated by a well recorded quiescent period during Late Miocene times. These correlating episodes of the volcanic record indicate a direct link between arc volcanism and the global tectonic evolution of the Pacific ocean margins.  相似文献   

11.
Abstract Temporal–spatial variations in Late Cenozoic volcanic activity in the Chugoku area, southwest Japan, have been examined based on 108 newly obtained K–Ar ages. Lava samples were collected from eight Quaternary volcanic provinces (Daisen, Hiruzen, Yokota, Daikonjima, Sambe, Ooe–Takayama, Abu and Oki) and a Tertiary volcanic cluster (Kibi Province) to cover almost all geological units in the province. Including published age data, a total of 442 Cenozoic radiometric ages are now available. Across‐arc volcanic activity in an area approximately 500 km long and 150 km wide can be examined over 26 million years. The period corresponds to syn‐ and post‐back‐arc basin opening stages of the island arc. Volcanic activity began in the central part of the rear‐arc ca 26 Ma. This was followed by arc‐wide expansion at 20 Ma by eruption at two rear‐arc centers located at the eastern and western ends. Expansion to the fore‐arc occurred between 20 and 12 Ma. This Tertiary volcanic arc was maintained until 4 Ma with predominant alkali basalt centers. The foremost‐arc zone activity ceased at 4 Ma, followed by quiescence over the whole arc between 4 and 3 Ma. Volcanic activity resumed at 3 Ma, covering the entire rear‐arc area, and continued until the present to form a Quaternary volcanic arc. Adakitic dacite first occurred at 1.7 Ma in the middle of the arc, and spread out in the center part of the Quaternary volcanic arc. Alkali basalt activities ceased in the area where adakite volcanism occurred. Fore‐arc expansion of the volcanic arc could be related to the upwelling and expansion of the asthenosphere, which caused opening of the Japan Sea. Narrowing of the volcanic zone could have been caused by progressive Philippine Sea Plate subduction. Deeper penetration could have caused melting of the slab and resulted in adakites. Volcanic history in the Late Cenozoic was probably controlled by the history of evolution of the upper mantle structure, coinciding with back‐arc basin opening and subsequent reinitiation of subduction.  相似文献   

12.
P. FRYER    H. SUJIMOTO    M. SEKINE    L. E. JOHNSON    J. KASAHARA    H. MASUDA    T. GAMO    T. ISHII    M. ARIYOSHI  & K. FUJIOKA 《Island Arc》1998,7(3):596-607
Until recently it was thought that the volcanoes of the Mariana island arc of the western Pacific terminated at Tracey Seamount at ∼ 14°N immediately west of Guam. Sea floor mapping in 1995 shows a series of large volcanic seamounts stretching westward for nearly 300 km beyond that point. The morphology, spacing, and composition of those sampled are consistent with their having formed as a consequence of eruption of suprasubduction zone arc magmas. The relationships of the volcanoes to the tectonic processes of subduction of the Pacific plate beneath the southern portion of the Mariana convergent plate margin are becoming increasingly clear as new bathymetry and geochemical data are amassed. The volcanoes along this trend that lie closest to Guam are forming where the center of active extension in the back-arc basin intersects the line of arc volcanoes. They develop well-defined rifts that are parallel to rift structures along the extension center, whereas volcanoes of the spreading axis to the north are smaller than the frontal arc volcanoes and tend to form along lineaments. Compositions of lavas from these intersection volcanoes bear some similarities to back-arc basin basalt, but are on the whole well within the range of compositions for Mariana island arc lavas. The Pacific plate subducts nearly orthogonal to the strike of the trench along the southern part of the Mariana system and the distance to the arc line from the trench axis is only ∼ 150 km. Several deep fault-controlled canyons on the inner slope of the southern Mariana trench indicate an enhanced tectonic extension of this plate margin. The presence of these active arc volcanoes and the existence of the orthogonal normal faulting along the southern Mariana forearc supports a model of radial extension for formation of the Mariana Trough, a model previously dismissed because of the lack of evidence of these two major geological features.  相似文献   

13.
Magnetic activity throughout the Antarctic Peninsula and the South Shetland Islands has been dominantly of a calc-alkaline nature for the last 200 Ma. Chemically, the plutonic and volcanic products are typical of a continental margin magmatic arc, similar to those from western South America. Within any one area, volcanic and plutonic rocks are compositionally indistinguishable, and all magmatic products show increasing SiO2, and increasing K/Si, Rb/Si, Th/Si and to a lesser extent Ce/Si and La/Si ratios away from the proposed trench axis. The calc-alkaline basaltic compositions also have high large ion lithophile (LIL; e.g. K, Rb, Th)/high field strength (HFS; e.g. Zr, Nb, Ti) ratios relative to non-orogenic counterparts, and increasing LIL/HFS element ratios with increasing fractionation. It is proposed that the high LIL/HFS element ratios in basaltic and andesitic melts are primary features due to dehydration processes with the subducted slab and to fractionation of minor mineral phases from the melt. The increasing LIL/HFS element ratios in more acid rocks are probably due to removal of minor mineral phases from the melt. Although zone refining may contribute to the spatial variations across the peninsula, we have proposed that an enriched subcontinental mantle provides a viable alternative source for the observed K-h variations and for the increased LIL-element contents found in continental margin calc-alkaline magmas.  相似文献   

14.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   

15.
Summary The morphology of the Wadati-Benioff zone in the region of Kamchatka and Northern Kuriles, based on the distribution of 1102 earthquake foci, verified the existence of an intermediate depth aseismic gap and its relation to active andesitic volcanism. A system of deep seismically active fracture zones, genetically connected with the process of subduction, was delineated in the continental plate and confirmed by the results of deep seismic sounding. Two of these fractures, dipping toward the subduction zone, may be considered as the principal feeding channels for active and Holocene volcanoes of the continental volcanic belts of Kamchatka.  相似文献   

16.
Abstract Two new cases of association of adakites with ‘normal’ island arc lavas and transitional adakites are recognized in the islands of Batan and Negros in northern and central Philippines, respectively. The Batan lavas are related to the subduction of the middle Miocene portion of the South China Sea basin along the Manila trench; those of Negros come from the almost aseismic subduction of the middle Miocene Sulu Sea crust along the Negros trench. The occurrence of the Batan adakites is consistent with previous findings showing adakitic glass inclusions within minerals of mantle xenoliths associated with Batan arc lavas. The similarity of adakite ages (1.09 Ma) and that of the metasomatized xenoliths (1 Ma) suggests that both are linked to the same slab‐melting and metasomatic event. Earlier Sr, Pb and Nd‐isotopic studies, however, also reveal the presence of an important sediment contribution to the Batan lava geochemistry. Thus, the role played by slab melts, assumed to have mid‐ocean ridge basalts‐like (MORB) isotopic characteristics, in enriching the Batan subarc mantle is largely masked by the sediment input. The Negros adakites are present only in Mount Cuernos, the volcanic center nearest to the Negros trench. Batch partial melting calculations show that the Negros adakites could be derived from a garnet amphibolitic source with normal‐MORB (N‐MORB) geochemistry. This is supported by the MORB‐like isotopic characteristics of the Mount Cuernos lavas. The volcanic rocks from the other volcanoes consist of normal arc and transitional adakitic lavas that have slightly higher Sr‐ and Pb‐isotopic ratios, probably due to slight sediment input. Mixing of adakites and normal arc lavas to produce transitional adakites is only partly supported by trace element geochemistry and not by field evidence. The transitional adakites can be modeled as partial melts of an adakite‐enriched mantle. Trace element enrichment of non‐adakitic lavas could reflect the interaction of their mantle source with uprising slab melts, as metasomatic mantle minerals scavenge certain trace elements from the adakitic fluids. Therefore, in arcs beneath which thick (up to 2 km) continent‐derived detrital sediments are involved in subduction, like in Batan, the sediment signature can overwhelm the slab melt input. In arcs like Negros where slow subduction could cause a more efficient scraping of thinner (approximately 1 km) detrital sediments, the contribution of slab melts is easier to detect.  相似文献   

17.
Three petrographic provinces can be recognized in the Cenozoic volcanic fields of Japan and surrounding areas. A province of a tholeiite series lies on the Pacific side of the Japanese Islands and includes the Izu Islands, whereas that of an alkali rock series occupies the Japan Sea side of the Islands with a narrow offshoot extending across central Honsyū (Honshū) and a continuation westward to Korea and Manchuria. A province of a calc-alkali rock series is superposed on the two provinces and occupies the greater part of the Japanese Islands exclusive of the Izu Islands and the islands in the Japan Sea southwest of Honsyū and north of Kyūsyū (Kyūshū). The boundary lines between the tholeiite and alkali provinces are located very closely to those between the areas where earthquakes occur at depths shallower than about 200 km and those for deeper ones. It is suggested that the parental tholeiite magma is produced by partial melting of the periodotite layer at depths shallower than 200 km. In the Izu Islands, except Nii-zima(Nii-jima) and Kōzu-sima(Kōzu-shima) close to Honsyū, the magma erupts to the surface without assimilating granitic material because the granitic layer is absent, resulting in volcanoes made up exclusively of the tholeiite series. The parental alkali olivine basalt magma is produced by partial melting of the peridotite layer at depths greater than 200 km. In the Japan Sea region, Korea, and Manchuria, it erupts to the surface without assimilating the granitic material, although it passes through a thick granitic layer, resulting in volcanoes made up exclusively of the alkali series. However, in the Cenozoic orogenic belt of the Japanese Islands, both types of parental magma assimilate granitic material during passage to the surface and erupt to form volcanoes of the calc-alkali series.  相似文献   

18.
大同地区玄武岩的岩石学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
大同盆地第四纪的火山可以划分为两部分:西北区(通常称大同火山群)和东南区。西北区的火山群属典型的中心式喷发,其玄武熔岩是碱性橄榄玄武岩。东南区的火山岩属裂隙式喷溢,其玄武岩流主要是由橄榄拉斑玄武岩组成。本文概括了这两个地区的玄武岩类在岩石学、地球化学、稀土和微量元素等方面的差别和各自的特点  相似文献   

19.
Yoga A.  Sendjaja  Jun-Ichi  Kimura  Edy  Sunardi 《Island Arc》2009,18(1):201-224
The Sunda Arc of Indonesia developed along the convergent margin between the Eurasian and the Australian Plates. More than 100 Quaternary volcanic centers occur along the arc. The West Java Arc is a segment of the Sunda Arc in which more than 10 volcanic centers are located, corresponding to the 120 to 200 km depth contours of the Wadati–Benioff zone. The geochemistry of 207 Quaternary lavas from six centers across the arc was investigated. The lavas range from basalt to dacite. Incompatible element abundances increase from the volcanic front to the rear‐arc in response to a change from low‐K to high‐K suites. Nd–Sr isotope compositions of the basalts scatter between mid‐ocean ridge basalt (MORB) source mantle and Indian Ocean sediment (SED) compositions, with volcanic front low‐K basalts having more radiogenic Nd than the rear‐arc basalts. It is suggested that mixing between slab‐derived fluids mainly from the SED and melt from MORB source mantle played a significant role in determining the geochemistry of the West Java basalts. Incompatible element patterns in primitive mantle normalized multi‐element plots are almost identical across the arc, except for greater inclination and weaker positive Sr spikes in the rear‐arc basalts. This suggests a lower degree of partial melting in the rear‐arc mantle, accompanied by change in SED fluid composition between the volcanic front and the rear‐arc. The latter is confirmed by fluid‐fluxed melting model calculations using multiple trace elements and Nd and Sr isotopes. All the West Java Arc lavas require deficit of Sr from the slab SED. This may occur due to selective breakdown of Sr‐rich hydrous silicate minerals, such as zoisite, at shallower depths before the SED component reaches the depth of dehydration effective for magma genesis. The rear‐arc basalts need further Sr deficits along with lesser fluid. These features are commonly observed in many arc basalts, and are likely attributable to the same mechanism.  相似文献   

20.
Cladistics is a systematic method of classification that groups entities on the basis of sharing similar characteristics in the most parsimonious manner. Here cladistics is applied to the classification of volcanoes using a dataset of 59 Quaternary volcanoes and 129 volcanic edifices of the Tohoku region, Northeast Japan. Volcano and edifice characteristics recorded in the database include attributes of volcano size, chemical composition, dominant eruptive products, volcano morphology, dominant landforms, volcano age and eruptive history. Without characteristics related to time the volcanic edifices divide into two groups, with characters related to volcano size, dominant composition and edifice morphology being the most diagnostic. Analysis including time based characteristics yields four groups with a good correlation between these groups and the two groups from the analysis without time for 108 out of 129 volcanic edifices. Thus when characters are slightly changed the volcanoes still form similar groupings. Analysis of the volcanoes both with and without time yields three groups based on compositional, eruptive products and morphological characters. Spatial clusters of volcanic centres have been recognised in the Tohoku region by Tamura et al. (Earth Planet Sci Lett 197:105–106, 2002). The groups identified by cladistic analysis are distributed unevenly between the clusters, indicating a tendency for individual clusters to form similar kinds of volcanoes with distinctive but coherent styles of volcanism. Uneven distribution of volcano types between clusters can be explained by variations in dominant magma compositions through time, which are reflected in eruption products and volcanic landforms. Cladistic analysis can be a useful tool for elucidating dynamic igneous processes that could be applied to other regions and globally. Our exploratory study indicates that cladistics has promise as a method for classifying volcanoes and potentially elucidating dynamic and evolutionary volcanic processes. Cladistics may also have utility in hazards assessment where spatial distributions and robust definitions of a volcano are important, as in locating sensitive facilities such as nuclear reactors and repositories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号