首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we deal with an indirect measure of the dielectric permittivity of the soil starting from GPR surface data collected on a buried “cooperative” target, meant as an object buried on purpose and whose extent is known a-priori. This target is exploited in order to achieve, from its image obtained from a suitable GPR data processing, an indirect measure of the dielectric permittivity of the embedding soil. GPR data processing is based on a linear microwave tomographic approach funded on the Born Approximation. Using this Born approach on two-dimensional inversion tests, we investigate the effect of the soil's electrical conductivity and permittivity on this indirect measure and demonstrate that the electrical field scattered by a spot-like buried object permits an accurate estimation of the soil permittivity even when no information of the soil conductivity is available.  相似文献   

2.
Various parameters such as bed and bank materials, shape and irregularity of the section, vegetation, river meanders, plan of the river path etc. affect the flow hydraulic resistance. In open channel hydraulics the effects of all these parameters are generally considered as the roughness coefficient. The Manning’s equation is one of the most practical equations to flow resistance analysis, in which the surface roughness is defined by Manning coefficient. Since many parameters are effective on the value of this coefficient, in this research study it was tried to define the roughness coefficient somehow that it be able to dynamically change with different river and hydraulic conditions. The collected data in Karun River (Iran) for two periods were used as the case study. It is shown that the accuracy of model predictions for water surface elevations were improved more than 13% in error estimation in comparison with the corresponding results obtained for a constant roughness coefficient. The roughness coefficient (n) for Karun River was also estimated using the empirical method proposed by Cowan for two different dry and wet periods. These values were then successfully compared with the average corresponding roughness coefficients calculated by the numerical model for those periods.  相似文献   

3.
基于开口同轴法的岩矿石样品介电常数测试   总被引:1,自引:0,他引:1       下载免费PDF全文
火成岩及变质岩找矿是金属探矿的重要组成部分,围岩与矿体之间存在的电性差别是区分二者的重要标志;另外探地雷达以高频电磁波传播为基础,决定电磁波场波速的主要因素是介电常数,因此以介电常数及电导率为内容的电性参数测试就显得尤为必要.传统岩矿石介电常数测试主要使用同轴传输/反射法,而开口同轴法在岩矿石电性测试方面的工作开展较少...  相似文献   

4.
Mine tailings present an important legacy of past and present ore-extraction activities in the Desert Southwest. Inactive mine tailings have no immediate economic role in current mining operations, yet from an environmental point of view it is important that such deposits are stabilized to prevent mass movement, wind or water erosion, leaching of chemicals such as acid mine drainage, and to reduce visual blight. In the presented study, we assess the potential for inferring textural properties of mine tailing deposits with electromagnetic induction (EMI) mapping as a means of informing efforts to establish vegetation at mine waste sites. EMI measurements of apparent electrical conductivity (ECa) and tailing samples were collected at a mine waste site in Southern Arizona, USA and used to test empirical and theoretical relationships between ECa and physical and mineralogical properties using linear and Gaussian process regression. Sensitivity analyses of a semi-theoretical and a regression model of ECa as a function of tailing properties indicated that volumetric clay fraction in the top 60 cm was a primary influence on bulk electrical conductivity along with water content, conductivity of the soil water and the presence of conductive minerals hematite and pyrite. At this site, latitude and longitude were better predictors of clay content than ECa, and while it was possible to obtain information about the spatial distribution of tailing texture using EMI, simple Kriging of texture data was a more powerful textural mapping technique. We conclude that EMI is a useful tool for mapping tailing texture at waste deposit sites, but due to physical and chemical heterogeneity of tailing deposits, it is necessary to collect more in situ samples than are needed for agricultural applications.  相似文献   

5.
In this study, a soil vegetation and atmosphere transfer (SVAT) model was linked with a microwave emission model to simulate microwave signatures for different terrain during summertime, when the energy and moisture fluxes at the land surface are strong. The integrated model, land surface process/radiobrightness (LSP/R), was forced with weather and initial conditions observed during a field experiment. It simulated the fluxes and brightness temperatures for bare soil and brome grass in the Northern Great Plains. The model estimates of soil temperature and moisture profiles and terrain brightness temperatures were compared with the observed values. Overall, the LSP model provides realistic estimates of soil moisture and temperature profiles to be used with a microwave model. The maximum mean differences and standard deviations between the modeled and the observed temperatures (canopy and soil) were 2.6 K and 6.8 K, respectively; those for the volumetric soil moisture were 0.9% and 1.5%, respectively. Brightness temperatures at 19 GHz matched well with the observations for bare soil, when a rough surface model was incorporated indicating reduced dielectric sensitivity to soil moisture by surface roughness. The brightness temperatures of the brome grass matched well with the observations indicating that a simple emission model was sufficient to simulate accurate brightness temperatures for grass typical of that region and surface roughness was not a significant issue for grass-covered soil at 19 GHz. Such integrated SVAT-microwave models allow for direct assimilation of microwave observations and can also be used to understand sensitivity of microwave signatures to changes in weather forcings and soil conditions for different terrain types.  相似文献   

6.
Partitioning transpiration (T) from evapotranspiration (ET) is a key process for understanding the interaction between land surfaces and the atmosphere. This paper reports daily partitioning results for a grassland over a 10-year period, obtained using the Community Land Model 3.5 (CLM3.5) land surface model. Hourly forcing data were collected from a long-term observation system located in the northeast of Japan ( http://doi.org/10.24575/0001.198108 ). To test the model behavior, total ET was validated using eddy correlation measurements combined with the energy balance method. The results were compared with previous research using an isotope approach for partitioning. The results demonstrate that our model can capture the dynamics of ET and its components at this location. Evaporation (E), originating from the ground and canopy, varied inter-annually, and from 2006 to 2015, average annual E was approximately 285 mm/year from the ground and 45 mm/year from the canopy. Average, T, was approximately 302 mm/year, accounting for approximately 48% of the total ET. Inter-annual results demonstrate that the water flux transported by vegetation ranges from 17 to 83% during the April–October period. A sensitivity test conducted with forcing data indicates air temperature, incident solar radiation, and longwave radiation exhibited a notable effect on all ET components. Relative humidity exhibited the only negative feedback to both evaporation and transpiration, contrary to the other forcing parameters. Our study reemphasized the effectiveness of CLM3.5 in partitioning T from ET and in understanding the complex interaction between land surfaces and the atmosphere.  相似文献   

7.
The basic goal of the present research is to investigate the estimation of both the in-situ density and moisture content within the Hot Mix Asphalt (HMA) pavement layer(s) in a non-destructive way using Ground Penetrating Radar (GPR) trace reflection amplitude. For this purpose, an extensive pavement survey was conducted using an air-coupled GPR system, operating at 1 GHz or alternatively with a 2 GHz central frequency. The collected data were analyzed comparatively for the two antennae. The variability of electric permittivity caused by variations in HMA material is discussed, while the effect of the different frequencies is compared on the ability to retrieve permittivity, in-situ density and moisture content of the compacted HMA material using relationships suggested in reviewed international literature. The main finding of the present research is that for the same type of HMA material, the assessment of the material properties appears to be independent from the two central frequencies of investigation. However, there is evidence concerning the variations between the GPR wave data for the two different frequencies. The research highlights that the increased penetration depth of the 1 GHz antenna can provide an increased identification of areas of potential moisture within the body of HMA layer, and suggests that the variations between the permittivity values for the two different frequencies could be used to assess the homogeneity of material density with depth as an indicator of the mixture compaction. Additional findings are included within the paper.  相似文献   

8.
何文英  陈洪滨  李军 《地球物理学报》1954,63(10):3573-3584
复杂多变的陆地表微波比辐射率,造成陆面上星载微波观测反演大气参数较为困难,也使得许多卫星微波资料不易同化应用到数值模式,因此迫切需要提供准确可靠的陆面微波地表比辐射率信息.随着卫星观测技术的迅速发展,利用丰富的星载被动微波观测直接反演陆面微波比辐射率成为一种主要手段.国外针对星载微波成像仪和微波垂直探测器开展较为系统的陆面微波比辐射率研究,建立不同类型的地表比辐射率反演方法,开发地表比辐射率参数化方法并应用于辐射资料同化.对于卫星观测反演陆面微波比辐射率存在的问题,开展了评估分析和方法订正.国内利用卫星观测也开展了一些陆面微波比辐射率研究工作,尚需要系统、综合的提炼.对于地表特征复杂的中国地区,还需要评估认识不同陆面微波比辐射率反演方法在我国适用情况,需要增强陆面微波比辐射率数据质量的认识以及业务应用.  相似文献   

9.
10.
Previous studies have considered vegetative drag at different scales, the blade scale, the patch scale, and the reach scale, but few studies have considered the connection between these scales. In this paper, we develop simple, physically-based models that connect processes affecting the drag generated by aquatic vegetation at the blade and patch scale to the hydraulic resistance produced by vegetation at the reach scale. For fully developed flows through submerged patches of vegetation, velocities can be successfully predicted using a two-layer model in which momentum transfer from the unobstructed flow to the vegetation patch is characterized using a constant friction factor. To account for vegetation flexibility in this two-layer model, we develop an iterative procedure that calculates the reduction in plant height and drag for a given flow speed based on the plant material properties, and feeds this information back into the momentum balance. This simple iteration accurately predicts vegetation heights and velocities for submerged flexible vegetation. Finally, we consider the effect of varying vegetation distribution patterns by extending the two-layer model to account for more complex channel and patch geometries. The total hydraulic resistance produced by vegetation depends primarily on the blockage factor, i.e. the fraction of the channel cross-section blocked by vegetation. For a constant blockage factor, the specific distribution of vegetation can also play a role, with a large number of small patches generating more resistance than a single large patch. By considering models with different levels of complexity, we offer suggestions for what field measurements are needed to advance the prediction of channel resistance.  相似文献   

11.
Use of remote sensing for evapotranspiration monitoring over land surfaces   总被引:1,自引:0,他引:1  
Abstract

Monitoring evapotranspiration (ET) at large scales is important for assessing climate and anthropogenic effects on natural and agricultural ecosystems. This paper describes techniques used in evaluating ET with remote sensing, which is the only technology that can efficiently and economically provide regional and global coverage. Some of the empirical/statistical techniques have been used operationally with satellite data for computing daily ET at regional scales. The more complex numerical simulation models require detailed input parameters that may limit their application to regions containing a large database of soils and vegetation properties. Current efforts are being directed towards simplifying the parameter requirements of these models. Essentially all energy balance models rely on an estimate of the available energy (net radiation less soil heat flux). Net radiation is not easily determined from space, although progress is being made. Simplified approaches for estimating soil heat flux appear promising for operational applications. In addition, most ET models utilize remote sensing data in the shortwave and thermal wavelengths to measure key boundary conditions. Differences between the radiometric surface temperature and aerodynamic temperature can be significant and progress in incorporating this effect is evident. Atmospheric effects on optical data are significant, and optical sensors cannot see through clouds. This has led some to use microwave observations as a surrogate for optical data to provide estimates of surface moisture and surface temperature; preliminary results are encouraging. The approaches that appear most promising use surface temperature and vegetation indices or a time rate of change in surface temperature coupled to an atmospheric boundary layer model. For many of these models, differences with ET observations can be as low as 20% from hourly to daily time scales, approaching the level of uncertainty in the measurement of ET and contradicting some recent pessimistic conclusions concerning the utility of remotely sensed radiometric surface temperature for determining the surface energy balance.  相似文献   

12.
After more than 300 years of river management, scientific knowledge of European river systems has evolved with limited empirical knowledge of truly natural systems. In particular, little is known of the mechanisms supporting the evolution and maintenance of islands and secondary channels. The dynamic, gravel‐bed Fiume Tagliamento, Italy, provides an opportunity to acquire baseline data from a river where the level of direct engineering intervention along the main stem is remarkably small. Against a background of a strong alpine to mediterranean climatic and hydrological gradient, this paper explores relationships between topography, sediment and vegetation at eight sites along the active zone of the Tagliamento. A conceptual model of island development is proposed which integrates the interactions between large woody debris and vegetation, geomorphic features, sediment calibre and hydrological regime. Islands may develop on bare gravel sites or be dissected from the floodplain by channel avulsion. Depositional and erosional processes result in different island types and developmental stages. Differences in the apparent trajectories of island development are identified for each of the eight study sites along the river. The management implications of the model and associated observations of the role of riparian vegetation in island development are considered. In particular, the potential impacts of woody debris removal, riparian tree management, regulation of river flow and sediment regimes, and changes in riparian tree species' distribution are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The performance of the Pan‐European Soil Erosion Risk Assessment (PESERA) model was evaluated by comparison with existing soil erosion data collected in plots under different land uses and climate conditions in Europe. In order to identify the most important sources of error, the PESERA model was evaluated by comparing model output with measured values as well as by assessing the effect of the various model components on prediction accuracy through a multistep approach. First, the performance of the hydrological and erosion components of PESERA was evaluated separately by comparing both runoff and soil loss predictions with measured values. In order to assess the performance of the vegetation growth component of PESERA, the predictions of the model based on observed values of vegetation ground cover were also compared with predictions based on the simulated vegetation cover values. Finally, in order to evaluate the sediment transport model, predicted monthly erosion rates were also calculated using observed values of runoff and vegetation cover instead of simulated values. Moreover, in order to investigate the capability of PESERA to reproduce seasonal trends, the observed and simulated monthly runoff and erosion values were aggregated at different temporal scale and we investigated at what extend the model prediction error could be reduced by output aggregation. PESERA showed promise to predict annual average spatial variability quite well. In its present form, short‐term temporal variations are not well captured probably due to various reasons. The multistep approach showed that this is not only due to unrealistic simulation of cover and runoff, being erosion prediction also an important source of error. Although variability between the investigated land uses and climate conditions is well captured, absolute rates are strongly underestimated. A calibration procedure, focused on a soil erodibility factor, is proposed to reduce the significant underestimation of soil erosion rates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The evolution of the ecohydrological system driven by external climatic forcing and internal feedbacks between vegetation and hydrology, which is more remarkable in arid and semiarid regions, has attracted substantial research attention in recent years. To examine critically the state‐of‐the‐art assumptions and dynamic equations used in the evolution study of an ecohydrological system, the rule of proceeding from simplicity to complexity should be followed. The riparian vegetation ecohydrological system in hyperarid regions (e.g. the lower Tarim River) can serve as a starting point given its simplicity, which has been seldom examined before in terms of system evolution. Further, the water transfer practice from 2000 to 2006 in the lower Tarim River serves as a valuable prototype experiment for model validation. This is because the remarkable changes in groundwater and vegetation in the area have taken place within a shorter period and thus can be easily observed. In the present study, the ecohydrological evolution model on riparian vegetation (ERV model) in hyperarid regions was proposed by coupling groundwater movement and vegetation dynamics. In the ERV model, the groundwater table serves as a critical feedback variable that determines the vegetation dynamics (colonization and mortality) and is determined by vegetation transpiration other than groundwater movement. The monitored groundwater table by wells and satellite‐observed vegetation coverage from the Moderate Resolution Imaging Spectroradiometer are used for model validation. The simulation results show the good performance of the ERV model with uncalibrated parameters. It was also calibrated manually using a multiobjective method, and the fine‐tuned parameters are close to the uncalibrated ones, indicating the robustness of the model. The analysis shows further that the increased evapotranspiration is substantially due to the water transfer and thus the vegetation growth, which implies the importance of ecohydrological coupling for long‐term hydrological modelling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Flow measurements were conducted by ADV Vectrino to investigate the role of different forms of single natural emergent vegetation elements on kinetic energy characteristics and the flow structure in open channel flow. Experiments were carried out for both forms of “erect” and “compressed” vegetation. The findings revealed that the form of “erect” has greater retaining influence on time-averaged mean velocity characteristics than “compressed” form. Furthermore, the turbulence and kinetic energy patterns behind the single vegetation were also examined. An empirical equation giving the relationship between the kinetic energy components of flow was derived based on the data. The ratio between turbulence kinetic energy and mean kinetic energy at a certain distance downstream of vegetation element was predicted by the empirical equation depending on the vegetation characteristics. These predictions were compared with a different experimental data set and produced satisfactory results. Also, the mean flow and turbulence characteristics behind an isolated natural plant and a volumetrically equivalent rigid cylinder were also compared.  相似文献   

16.
Target detection using ground penetrating radar (GPR) is based on the contrast between the electrical parameters of the target and the background medium, such as dielectric permittivity, conductivity and permeability. The application mainly concentrates on the detection of the medium interface and the target shape. In any theoretical study, a simulation model is built with a homogeneous medium. However, real detection encounters heterogeneous media which might produce scattering and diffraction at electrical interfaces and distort the radar pulse shape and affect the detection resolution. In this paper, we build multi-scale random media model with an ellipsoidal autocorrelation function and use FDTD method to simulate the GPR signal response. We then estimate and analyze the arrival time, layer thickness, permittivity and the physics relation in different scale random models according to the S transform method and the transmission wave method. The results demonstrate that we can use GPR to obtain geophysical information of multi-scale heterogeneous media, and provide a foundation for real media detection and complex media inversion.  相似文献   

17.
Soil‐mantled pole‐facing hillslopes on Earth tend to be steeper, wetter, and have more vegetation cover compared with adjacent equator‐facing hillslopes. These and other slope aspect controls are often the consequence of feedbacks among hydrologic, ecologic, pedogenic, and geomorphic processes triggered by spatial variations in mean annual insolation. In this paper we review the state of knowledge on slope aspect controls of Critical Zone (CZ) processes using the latitudinal and elevational dependence of topographic asymmetry as a motivating observation. At relatively low latitudes and elevations, pole‐facing hillslopes tend to be steeper. At higher latitudes and elevations this pattern reverses. We reproduce this pattern using an empirical model based on parsimonious functions of latitude, an aridity index, mean‐annual temperature, and slope gradient. Using this empirical model and the literature as guides, we present a conceptual model for the slope‐aspect‐driven CZ feedbacks that generate asymmetry in water‐limited and temperature‐limited end‐member cases. In this conceptual model the dominant factor driving slope aspect differences at relatively low latitudes and elevations is the difference in mean‐annual soil moisture. The dominant factor at higher latitudes and elevations is temperature limitation on vegetation growth. In water‐limited cases, we propose that higher mean‐annual soil moisture on pole‐facing hillslopes drives higher soil production rates, higher water storage potential, more vegetation cover, faster dust deposition, and lower erosional efficiency in a positive feedback. At higher latitudes and elevations, pole‐facing hillslopes tend to have less vegetation cover, greater erosional efficiency, and gentler slopes, thus reversing the pattern of asymmetry found at lower latitudes and elevations. Our conceptual model emphasizes the linkages among short‐ and long‐timescale processes and across CZ sub‐disciplines; it also points to opportunities to further understand how CZ processes interact. We also demonstrate the importance of paleoclimatic conditions and non‐climatic factors in influencing slope aspect variations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Wind erosion is an important soil erosion and hence a soil degradation problem in the Sahelian zone of West Africa. Potentially, the characteristic dryland vegetation with scattered trees and shrubs can provide for soil erosion protection from wind erosion, but so far adequate quantification of vegetation impacts is lacking. The aim of this study was to develop a model of wind‐blown soil erosion and sediment transport around a single shrub‐type vegetation element. Starting with the selection of a suitable transport equation from four possible sediment transport equations, the effects of a single vegetation element on wind speed were parameterized. The modified wind speed was then applied to a sediment transport equation to model the change in sediment mass flux around a shrub. The model was tested with field data on wind speed and sediment transport measured around isolated shrubs in a farmer's field in the north of Burkina Faso. The simple empirical equation of Radok (Journal of Glaciology 19 : 123–129, 1977) performed best in modelling soil erosion and sediment transport, both for the entire event duration and for each minute within an event. Universal values for the empirical constants in the sediment transport equation could not be obtained because of the large variability in soil and roughness characteristics. The pattern of wind speed, soil erosion and sediment transport behind a shrub and on either side of it was modelled. The wind speed changed in the lee of the vegetation element depending on its porosity, height and downwind position. Wind speed was recovered to the upstream speed at a downwind distance of 7·5 times the height of the shrub. The variability in wind direction created a ‘rotating’ area of influence around the shrub. Compared to field measurements the model predicted an 8% larger reduction in sediment transport in the lee of the vegetation element, and a 22% larger increase beside the vegetation element. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Vegetation density on foredunes exerts an important control on aeolian sediment transport and deposition, and therefore on profile development. In a long‐term monitoring field experiment, three plots were planted with regular grids of reed bundles in three different densities: 4, 2 and 1 bundles per m2. This study reports on the differences in profile development under the range of vegetation densities. Topographic profiles were measured between May 1996 and April 1997. Results indicate important differences in profile development for the three reed bundle densities: in the highest density plot a distinct, steep dune developed, while in the lowest density a more gradual and smooth sand ramp was deposited. When the stems had been completely buried, differences in profile evolution vanished. After a second planting of reed stems in January 1997 the process was repeated. In May 1997, all plots had gained a sand volume ranging from 11·5 to 12·3 m3 m?1, indicating that the sediment budget is relatively constant, regardless of the particular profile evolution. The field evidence is compared with simulations of profile development, generated by the foredune development model SAFE. The model successfully reproduces the overall profile development, but in general, the equations used for vegetation–transport interaction overestimate the effect of vegetation. This causes some deviations between field and model results. Several reasons for this are discussed. Based on the experiments reported here, recommendations are given for further research. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号