首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In arid zones, many active aeolian dunes terminate at ephemeral and perennial desert rivers. The desert rivers show very high rates of sediment transport that cause deleterious downstream effects on the river system and ecology. High sediment loading has been attributed to severe water erosion of sparsely covered watersheds during infrequent but heavy rainfall. Although aeolian erosion is known to lead to high rates of wind‐blown sand transport, direct confirmation of whether the aeolian processes accelerate or inhibit fluvial sediment loss is lacking. Here, we show that an aeolian‐fluvial cycling process is responsible for the high rate of suspended sediment transport in a Sudalaer ephemeral desert channel in the Ordos Plateau of China. Frequent aeolian processes, but low frequency (once every 3 years on average) flooding, occur in this region. Wind‐blown saltating grains appeared to be unable to cross the desert channel because of interruption of channel‐induced recirculating air flow, and therefore tended to settle in the channel during the windy seasons, leading to channel narrowing. During flooding, this narrowed channel was found to yield a threefold increase in suspended sediment loading and a 3.4‐fold increase in the weight percentage of the 0.08–0.2 mm sediment fraction on 18 July 2012. Loss of stored aeolian sand due to channel erosion accounted for about half of the total sediment yield in this watershed. These findings show that aeolian processes play an essential role in accelerating the sediment yield from a watershed characterized by aeolian‐fluvial interplay and also suggest that the drier the region and the greater the aeolian process, the more the aeolian process contributes to fluvial sediment yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We quantify erosion rates in the higher sectors of the Huasco Valley, in the Main Cordillera of the semi‐arid Andes of Chile, using elevation differences between three successive geomorphic markers (pediments and paleo‐valleys) and the present day valley. Available Ar‐Ar ages of Neogene pediments are used to estimate mean erosion rates for the three periods (16 to 13 My, 13 to 8 My, and following 8 My). The landscape of the Huasco Valley is in a transient state, as indicated by well‐preserved pediment surfaces in interfluves, valleys deeply incised by fluvial and glacial erosion and scarped head‐valleys that represent the current knickzones. Higher erosion rates (45–75 m/My) are calculated for the more recent period (< 8 My) during which deep incision developed compared to previous periods (6–31 m/My). Quantitative data indicate that glaciers had a much higher erosional capability than fluvial activity in the higher sectors of the Main Cordillera. Comparison with erosion rates calculated in other drainage basins of the Chilean Andes suggests that the variability of erosion rates depends on the landscape's transient erosive state. The landscape's geomorphologic response to the uplift of the Main Cordillera results in the retreat of a knickzone, for which retreat velocity depends on precipitation rate pattern and glacial erosion intensity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In semi‐arid areas, high‐intensity rainfall events are often held responsible for the main part of soil erosion. Long‐term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event‐based soil erosion models are better suited for this purpose but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event‐based erosion model was applied to the medium‐sized (~50 km2) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium‐sized catchments, (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that because of large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in Ksat values. Scenario calculations show that although ~50% of soil erosion occurs as a result of high frequency, low‐intensity rainfall events, large‐magnitude, low‐frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude–frequency distributions in landscape evolution models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Soil loss, fluvial erosion, and sedimentation are major problems in semi‐arid environments due to the high associated costs of decreasing services such as provisioning and regulating water resources. The objective of this research is to analyse sediment yield in a mountainous semi‐arid basin, paying special attention to the sources of sediment, the associated uncertainties, and the transport processes involved. The segregation hypothesis along a reservoir of the sediment coming from hillslopes or fluvial systems is also evaluated. For this purpose, bottom‐set and deltaic deposits of a reservoir (110 hm3 ) in southern Spain have been measured and compared with basin erosion and fluvial transport monitoring over a 12‐year period. The volume of sediment stored at the bottomset of the reservoir shows a relative match with parametric predictions based on the Revised Universal Soil Loss Equation/Modified Universal Soil Loss Equation hillslope models and rating curves, estimated as being between 7 and 13 t·ha?1·year?1. Similarly, the measured volume of deltaic deposit fits the average value of stochastic simulations from different bedload transport equations. These contributions represent 50–65% of the total volume measured regarding suspended sediment inputs, way above that described in previous works. This highlights the importance of considering bedload when estimating the useful life of reservoirs in semi‐arid environments. The major differences in sediment grain size between hillslopes and river systems, and the size fractions measured along the reservoir, support the assertion of segregation hypothesis. Nonetheless, based on the processes observed and the uncertainty related to modelling, that assertion has to be taken with caution. At basin scale, a specific sediment yield of between 19 and 24 t·ha?1·year?1 has been estimated, which includes hillslopes and fluvial contributions. This rate is in the range of sediment yield reported for Mediterranean mountain areas of a torrential character. The pulse‐like nature of the system and the spatial heterogeneity of fluvial and hillslope erosion rates points out the importance of considering mid to long‐term and process‐based approaches and emphasizes the limitations of annual estimations for management purposes.  相似文献   

6.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
During the last 150 years, land degradation across the semi‐arid grasslands of the south‐western United States has been associated with an increase in runoff and erosion. Concurrent with this increase in runoff and erosion is a loss of nitrogen (N) and phosphorus (P), which are plant‐essential nutrients. This study investigates the runoff‐driven redistribution and loss of dissolved and particulate‐bound N and P that occurs during natural runoff events over a trajectory of degradation, from grassland to degraded shrubland, in central New Mexico. Runoff‐driven nutrient dynamics were monitored at four stages over a transition from grassland to shrubland, for naturally occurring rainfall events over 10 × 30 m bounded runoff plots. Results show that particulate‐bound forms of N and P are responsible for most of N and P lost from the plots due to erosion occurring during runoff events. Results suggest that for high‐magnitude rainfall events, the output of N and P from the plots may greatly exceed the amount input into the plots, particularly over shrub‐dominated plots where erosion rates are higher. As these results only become apparent when monitoring these processes over larger hillslope plots, it is important to recognize that processes of nutrient cycling related to the islands of fertility hypothesis may have previously been overstated when observed only at smaller spatial scales. Thus, the progressive degradation of semi‐arid grassland ecosystems across the south‐western United States and other semi‐arid ecosystems worldwide has the potential to affect N and P cycling significantly through an increase in nutrient redistribution and loss in runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Erosion rates and processes define how mountainous landscapes evolve. This study determines the range of erosion rates in a semi‐arid landscape over decadal time spans and defines the dominant processes controlling variability in erosion rates. The varying topography and climatic regimes of the Xiying Basin (Qilian Shan Mountains, China) enables us to examine the relative roles of sheet wash versus rainsplash and the influence of vegetation on soil erosion and deposition. Soil erosion rates since 1954 were determined using 137Cs along 21 transects at four sites with varying gradient, rainfall, and vegetation cover. The mean 137Cs derived soil erosion rate ~0.42 mm/a was consistent with the catchment level erosion rate derived from total sediment yield for a 44 year record. However, there is considerable variability in 137Cs erosion rates both between transects and along transects, perhaps reflecting variation not only in the effectiveness of individual processes but also in their relative roles. We compare the 137Cs‐derived erosion rates with 1‐D models for sediment flux that incorporate sheet wash and rainsplash processes, testing them over a previously untested 60 year timescale. The variability in 137Cs erosion rates along transects is best replicated by sheet wash dominated simulations, suggesting that this is the dominant erosion process in this semi‐arid landscape. The functional form of the sheetwash model can also explain our observations that 137Cs erosion rates decrease with upslope length (i.e. distance down slope) while its variability increases. However, sparsely vegetated sites, located in slightly drier locations, have higher erosion rates, and are not as accurately modeled as densely vegetated sites, suggesting that patchiness of vegetation introduces fine scale variability in erosion rates on these slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The west‐central part of South Africa's Free State Province falls within the transition zone between South Africa's sub‐humid, temperate grasslands to the east, and the semi‐arid Karoo and arid Kalahari to the south and west, respectively. The area is characterized by low rainfall (typically 500 mm or less) with high variability, but environmental conditions allow widespread dryland commercial agriculture (maize, sunflowers and stock farming). However, human activity promotes wind erosion and the area is susceptible to dust emissions. This study is the first to quantify the degree of wind erosion on the agricultural soils in the region under prevailing winter to spring climatic conditions and land management practices. Using arrays of cup anemometers, dust deposition traps and saltation impact sensors (Safires), measurements were made of the key erosivity and erodibility drivers that control the degree of wind erosion. Results demonstrate that significant quantities of dust are mobilized, particularly during the months of September and October. Thresholds of wind erosion are shown to respond particularly closely to changes in surface and aerodynamic roughness (z0) with the amount of collected dust correlating well with measures of wind erosivity that weight the impact of higher wind speeds. Given the importance of surface roughness in controlling erosion thresholds, results show that the opportunity exists for well designed farming practices to control wind erosion. However, it is likely that climatically driven environmental change will impact on some of the identified controls on erosion (wind power, moisture availability) with the result that the wind erosion hazard is likely to increase within this marginal environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi‐arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero‐order experimental microcatchments (328–759 m2), representative of an extensive semi‐arid watershed with a high potential erosion risk in the south‐east of Spain, were selected and monitored for 3 years (1991–93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1‐min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m?2 year?1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h?1 was considered as ‘erosive rainfall’ in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore‐size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Sediment distribution is investigated applying grain size analysis to 279 surface samples from the transitional zone between high mountains (Qilian Shan) and their arid forelands (Hexi Corridor) in north‐western China. Six main sediment types were classified. Medium scale (103 m) geomorphological setting is carefully considered as it may play an important role concerning sediment supply and availability. A tripartite distribution of sedimentological landscape units along the mountain to foreland transition is evident. Aeolian sediments (e.g. loess and dune sands) are widespread. They are used to identify aeolian transport pathways. The mU/fS‐ratio (5–11 µm/48–70 µm) among primary loess opposes the two grain size fractions being most sensitive to varying accumulation conditions. The first fraction is attributed to long‐distance transport in high suspension clouds whereas the latter represents local transport in saltation mode. The ratio shows strong correlation with elevation (R2 = 0.77). Thus, it indicates a relatively higher far‐traveled dust supply in mountainous areas (>3000 m above sea level [a.s.l.]) compared to the foreland. The contribution of westerlies to high mountain loess deposits is considered likely. Hereby, the influence of the geomorphological setting on grain size composition of aeolian sediments becomes apparent: the contribution from distant dust sources is ubiquitous in the study area. However, the far‐distance contribution may be reduced by the availability of fine sand provided in low topography settings. Plain foreland areas support fine sand deflation from supplying river beds, allowing the formation of sandy loess in foreland areas and intramontane basins. In contrast, high mountain topography inhibits strong sand deflation into loess deposits. Eastern parts of the Hexi Corridor show higher aeolian sand occurrence. In contrast, the western parts are dominated by gravel gobi surfaces. This is attributed to higher sand supply in eastern parts provided by the Badain Jaran Desert and fluvial storages as sand sources. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Thalweg migration of an alluvial river plays a key role in channel evolution, which may influence the effect of existing river training works and biodiversity on floodplains, and cause losses in riparian land and property. The braided reach of the Lower Yellow River underwent continuous channel aggradation during the period from 1986 to 1999, and then remarkable channel degradation in 1999–2015 owing to the state of operation of the Xiaolangdi Reservoir in 1999. Here we quantify associated thalweg migration changes and identify the key influencing factor in the braided reach. Thalweg‐migration distances and intensities at section‐ and reach‐scales were calculated during the past 30 years from 1986 to 2015, in order to investigate the characteristics of thalweg migration in the reach. There was a 47% reduction in the reach‐scale thalweg‐migration distance and a 35% reduction in the corresponding migration intensity after the reservoir operation. It is also revealed that fluvial erosion intensity is a dominant factor in controlling the thalweg migration, based on the investigation into various influencing factors in the study reach. The thalweg‐migration intensity of the braided reach can be expressed as a power function of the previous four‐year average fluvial erosion intensity. The calculated thalweg‐migration intensities in 1986–2015 using the proposed relation generally agree with the observed data. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Mine tailings dams pose a signi?cant risk to the environment if not correctly designed, built and maintained. The effect of erosion on a back‐?lled and capped earthen dam wall was examined by construction of an analogue in an experimental model landscape simulator. The ability of a computer‐based erosion model to simulate erosion processes on the experimental structure was examined. The experimental landscape simulator uses a rainfall simulator to create overland ?ow and erode an arti?cial soil. At the commencement of rainfall, erosion occurred rapidly with deep gullies developing on the dam wall batter. The gullies developed by downcutting, with consequent bank collapse and slumping, and followed ?ow lines towards their source. A physically based erosion model (SIBERIA) was used to simulate erosion on the experimental dam wall. Erosion and consequent development of the experimental structure were modelled by SIBERIA. The ability of SIBERIA to model incision and landscape development in the experimental setting was further examined by use of a simple one‐dimensional experimental catchment. The laboratory experiment and computer simulations demonstrated that erosion on the tailings dam is driven by concentrated runoff and that runoff control is crucial to the long‐term stability of such structures. The study demonstrates that computer‐based erosion models can be used to predict how erosion occurs on the experimental landscapes examined, thus providing con?dence in their use and application. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号