首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
鄂尔多斯块体及周边区域的深部构造研究对于了解华北克拉通与其周边地带形成、发展和克拉通破坏具有怎样的壳、幔结构和深层动力学过程具有重要的意义.本文利用北京大学和中国地震局在华北克拉通西部地区布设的共32台宽频带地震仪记录的远震体波资料,组成一条近南北向的观测剖面,由北至南依次穿过阴山造山带、河套盆地、鄂尔多斯块体、渭河盆地、秦岭造山带和大巴山系.计算各台站的P波接收函数,利用倾斜叠加(H-κ)方法得到了研究区域地壳厚度和泊松比;利用Kirchhoff偏移成像方法得到了研究区域下方Moho面的形态.研究结果表明,阴山造山带地壳厚度为42~44km,地壳结构稳定,泊松比约为0.27,推测该区域的造山运动是深部物质上涌导致.河套盆地内Moho面抬升,可认为是岩石圈物质上涌导致.鄂尔多斯块体内平均地壳厚度41.2km,泊松比0.27,Moho面从北至南平缓有平缓抬升的趋势,从最北端的43.5km到最南端的39km.鄂尔多斯块体北部在20km深度处存在低速层,块体内部36°N~37°N区域内出现Moho面小规模下沉,这对鄂尔多斯块体地壳结构单一、完整、未遭到破坏的观点提出了挑战.渭河盆地内Moho面隆起,最浅达到30km,推测是青藏高原地壳上地幔物质向东挤出并上涌所造成的.秦岭造山带地壳厚度约38.5km,Moho面平稳.位于扬子板块北缘的大巴山系地壳厚度达到54.5km,明显大于华北克拉通的地壳厚度.  相似文献   

2.
华北克拉通地壳结构及动力学机制分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对布设在华北克拉通三个陆块的199个宽频带台站记录的远震数据进行了接收函数计算.利用H-κ迭代方法获得了该区域基岩地区的地壳结构,平滑处理后作为背景结构模型中的基岩地区地壳结构;利用相邻算法对沉积层地区的接收函数进行了波形拟合计算,获得了沉积层结构,平滑后作为背景结构模型中的沉积层结构;结合前人的研究成果,完善了研究区域的背景结构模型.以此模型为基础,对接收函数进行了CCP(Common Conversion Point,共转换点)叠加成像,获得了Moho面成像结果,对比沉积层的成像结果发现:西部陆块中鄂尔多斯块体东部地区地壳厚度较大,约为42 km,泊松比较低,小于0.24,为长英质含量较多的地壳层;位于中部陆块的山西地堑地壳厚度小于鄂尔多斯块体,且变化较大,西侧地壳厚度约为40 km,东侧重力梯度带附近地壳厚度迅速减薄至36 km左右,张家口-怀来-大同一带出现了地壳的局部抬升,地壳厚度等值线基本以北北东方向为主,与构造带方向基本一致,地堑内泊松比约为0.26~0.28,前人对此区域的层析成像研究结果表明太行山隆起和阴山隆起存在壳内低速层,推测为地壳部分熔融以及上地幔物质上涌造成的;东部陆块中渤海湾盆地的地壳厚度较薄,约为32 km,部分地区小于30 km,其中冀中坳陷带地壳厚度最薄,约为28 km,沉积层基底分布与Moho面分布呈镜像对称趋势,沉积层较厚地区的地壳较薄,推测东部陆块在太平洋板块俯冲作用下,存在北西-南东向的拉张作用,使其内发育了大量断陷盆地.  相似文献   

3.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

4.
本文对喜马拉雅计划二期部分台站的远震波形数据进行接收函数提取,利用接收函数共转换点叠加方法获得阿拉善地块、鄂尔多斯地块以及银川—河套盆地下方0~80 km深度的速度间断面结构.结果表明:鄂尔多斯地块成层性好,地壳厚度为38~42 km,康拉德界面为18~22 km,阿拉善地区的Moho面深度为38~45 km.河套盆地地壳厚度约52 km,银川断陷盆地和贺兰山下方的Moho面最深为~55 km.鄂尔多斯西缘构造边界下方Moho面变化明显,且黄河断裂为深大断裂直接切割莫霍界面.根据本文的间断面成像结果我们进一步确定阿拉善地块与鄂尔多斯地块分属不同的大地构造单元.与此同时,我们推测贺兰山以西70~80 km范围内和鄂尔多斯地块西缘北段存在地壳增厚变形的可能.  相似文献   

5.
利用纯S波波形拟合方法,输入纯S波波形,使用传递矩阵计算了层状介质自底面传到地表约100 km厚度、32 s的理论地震波形;引进快速模拟退火法进行反演搜索理想模型,用理论波形与观测波形的相关系数作为约束函数,选择同一台站几个震例的理论波形与实际波形吻合最好的模型作为该台站下方的可接受速度结构模型.收集深源远震的清晰S波记录波形,我们共得到了陕西省境内秦岭造山带中段及其邻近区域13个地震台站下方的S波速度结构.结果显示,秦岭造山地带、渭河盆地及鄂尔多斯块体的地壳结构之间存在很大的差异,各个块体有其各自的构造特点;不过三个块体的地壳厚度都显示了由东向西逐渐增加的变化趋势.  相似文献   

6.
从2013年3月至2014年11月,我们布设了一条延川—涪陵的流动宽频带地震台阵,剖面由70个流动台站组成,全长约900km,穿越华北克拉通、秦岭—大巴造山带和扬子克拉通东北缘陆内三大构造单元.利用记录到的远震波形资料,提取得到5638个远震P波接收函数,使用H-κ叠加扫描和CCP偏移叠加方法刻划了秦岭造山带与南北相邻地带的地壳厚度、泊松比以及构造界带.研究结果显示,(1)关于地壳厚度:地壳最厚的区域出现在大巴山,地壳厚度集中在47~51km之间,秦岭的地壳厚度相对大巴山较薄,且呈向北减薄趋势,集中在37~46km之间,渭河盆地地壳厚度为本区域最薄地带,在34°N左右处达到最薄为35km,剖面北侧的南鄂尔多斯盆地的地壳厚度变化缓慢,多为44km左右,南侧的四川盆地东北缘的地壳厚度向南缓慢减薄,集中在42~48km之间;(2)关于泊松比:使用接收函数H-κ叠加扫描法得到了沿剖面各台站下方地壳的平均纵、横波速度比VP/VS(κ),进一步计算得到泊松比σ,泊松比具有明显的横向分块特征,秦岭造山带的泊松比明显低于南北两侧区域,其小于0.26的泊松比表征着该区域地壳物质组分主要为酸性岩石,亦即其酸性长英质组分上地壳相对于基性铁镁质组分下地壳较厚,该区域没有高泊松比分布则表明不存在广泛的部分熔融.(3)关于构造界带:秦岭—大巴造山带与扬子克拉通的边界并非在勉略构造带,应向南移至四川盆地的东北缘,华北克拉通和扬子克拉通分踞秦岭—大巴造山带南、北两侧,且分别以较陡倾角向南和相对较缓的倾角向北俯冲于秦岭—大巴造山带之下,使得秦岭—大巴造山带呈不对称状扇形向外扩展与向上抬升的空间几何模型.秦岭和大巴山之间33°N附近存在分界面,两区域地壳厚度与泊松比特征各异.  相似文献   

7.
利用接收函数研究六盘山地区地壳上地幔结构特征   总被引:7,自引:0,他引:7  
利用六盘山地区宽频带流动地震台阵的远震体波记录,采用接收函数方法研究台阵下方的地壳上地幔结构,并采用接收函数振幅加权叠加方法对这一地区平均地壳厚度和泊松比进行估算.研究结果显示,青藏高原东北缘和鄂尔多斯的接触过渡带接收函数震相复杂,地壳变形强烈,青藏高原东北缘地壳平均厚度约为51.5km,六盘山下方地壳厚度在53.5km,鄂尔多斯西南缘地壳平均厚度约为50km,整个莫霍面呈下凹状.泊松比计算结果显示,六盘山东侧和西侧地壳泊松比值在正常范围内(0.25~0.26),六盘山下方的地壳泊松比值偏高(0.27~0.29),推测与地壳中存在部分熔融.泊松比值的横向变化,指示测线范围地壳物质组成和力学性质存在横向差异,反映在欧亚板块与印度板块碰撞作用影响下青藏高原下地壳物质存在向北东方向的流动.  相似文献   

8.
通过对南北地震带北段区域所布设的676个流动地震台站观测资料进行处理,联合反演面波频散与接收函数数据,获得了研究区内地壳厚度、沉积层厚度的分布情况以及地壳上地幔高分辨率S波速度结构成像结果.反演结果显示研究区地壳厚度从青藏高原东北缘向外总体逐渐变薄,秦岭造山带地壳厚度较同属青藏高原东北缘的北祁连块体明显减薄;鄂尔多斯盆地及河套盆地分布有非常厚的沉积层,阿拉善块体部分区域也有一定沉积层分布,沉积层与研究区内盆地位置较为一致;松潘—甘孜块体、北祁连造山带等青藏高原东北缘总体表现为S波低速异常;在中下地壳,松潘—甘孜块体下方的低速体比北祁连造山带下方的低速体S波速度值更小、分布深度更浅,更有可能对应于部分熔融的地壳;鄂尔多斯盆地在中下地壳以及上地幔内有着较大范围的高速异常一直延伸到120 km以下,而河套盆地地幔只在80 km以上部分有着高速异常的分布,此深度可能代表了河套盆地的岩石圈厚度,来自深部地幔的热物质上涌造成了该区域的岩石圈减薄;阿拉善块体在地壳和上地幔都表现出高低速共存的分布特征,暗示阿拉善块体西部岩石圈可能受青藏高原东北缘的挤压作用发生改造.  相似文献   

9.
鄂尔多斯地块东南缘地带Moho深度变化特征研究   总被引:7,自引:2,他引:5  
鄂尔多斯地块东南缘是主要的历史强震活跃区,曾经多次发生6级或以上的强烈地震,其边缘边界具有较强的地震活动性.本文利用该区域内分布的固定台站数据记录的大量远震体波波形资料,应用频率域反褶积方法提取远震P波接收函数,由H-κ方法测定了各台站下方的Moho深度和Vp/Vs值.研究结果表明:鄂尔多斯地块东南缘的Vp/Vs值介于1.6~1.9之间.东缘的Moho深度介于33.4~45 km之间,太原断陷盆地附近的Moho深度较浅,最浅处为33.4 km;东部北段的延怀盆地、蔚县盆地、阳原盆地和南段的临汾盆地附近Moho深度变化不大,平均深度为40 km.而在东缘东侧,因存在着山西断陷带,导致块体边缘的Moho深度要小于块体内部的Moho深度.块体南缘的Moho深度介于31.0~53.1 km之间,自东段向西段Moho深度逐渐变大,从渭河盆地附近的31.0 km增厚至秦岭造山带地段的53.1 km.总之,鄂尔多斯地块东南缘地带的Moho深度和Vp/Vs值分布具有明显的分块特征,块体内部结构比较稳定,东缘东段地壳结构相对一致,东缘东侧与西侧地壳深度具有明显的差异性,从山西断陷以东向西地壳厚度逐渐增厚,很好地对应了其地质构造特点.  相似文献   

10.
以新源地震台2016—2020年记录的震中距在30°~90°的远震波形数据为基础,用时间域迭代反褶积方法提取远震P波接收函数,采用一种具有谐波校正的广义接收函数H-k叠加方法H-k-c计算台站下方的地壳厚度及泊松比。结果表明H-k-c方法明显改善地壳厚度和泊松比的估计,新源地震台下方地壳平均厚度约56.3 km,泊松比约0.25。  相似文献   

11.
朱洪翔  田有  刘财  冯晅 《地球物理学报》2018,61(9):3664-3675
接收函数方法被广泛地应用于地壳上地幔结构的研究中,H-κ叠加方法是其中最常用的方法之一.对于布设在基岩区台站计算的接收函数,H-κ叠加方法可以准确地估计台站下方地壳厚度和平均波速比,但是对于沉积盆地地区计算的接收函数,由于低速沉积层内会产生多次波混响,干扰甚至覆盖接收函数中莫霍面的转换波和多次波震相,从而影响H-κ叠加结果的准确性.为准确估计沉积盆地地区地壳结构,本文提出使用预测反褶积方法去除接收函数中低速沉积层内多次波混响,其中预测步长由接收函数归一化自相关函数获得,物理意义为沉积层内S波双程走时.合成接收函数和实测接收函数试验表明,本文提出的预测反褶积方法可以有效地去除沉积层多次波混响,并结合改进的H-κ叠加方法可以准确地估计沉积层下覆地壳厚度和平均波速比.相比于其他去除接收函数多次波混响的方法,本文提出的预测反褶积方法具有参数设定简单、运算量小、震相幅值较大等特点,适用于大批量数据处理.  相似文献   

12.
收集福建省“九五”数字地震遥测台网中8个宽频带台站的远震波形资料,应用接收函数的研究方法计算各个台站下方的接收函数。采用非线性的反演方法获得这些台站下方的S波速度结构.确定这些台站下方莫霍界面深度的分布情况。分析得到的反演结果,福建地区莫霍面的起伏不大.平均的地壳厚度约为32km。在0~2km之间均存在一层低速层,这与地表覆盖着一层松散的沉积层是相对应的。内陆地区台站附近莫霍界面深度较沿海地区略高,沿海台站的莫霍界面深度北部略高于南部。  相似文献   

13.
青藏高原拉萨及羌塘块体的地壳结构研究   总被引:9,自引:1,他引:9       下载免费PDF全文
采用接收函数反演方法,从INDEPTH-Ⅲ台站中选取了18个资料记录较好的台站,对拉萨及羌塘块体的地壳厚度与低速层的分布等进行了研究. 结果表明,沿着INDEPTH-Ⅲ剖面,拉萨块体Moho界面较羌塘要深约8 km, 这可能暗示拉萨块体北缘的地幔盖层向北俯冲到羌塘块体之下;反演得到的地壳速度模型显示,拉萨北部及羌塘块体的部分台站下方中地壳有低速层存在,结合以往地质资料,可以推断拉萨块体北部和羌塘块体10~20 km以下的中地壳普遍存在低速层. 这些低速层可能与其下部的高温上地幔有直接关系.   相似文献   

14.
青藏高原东南缘Moho面速度密度跃变研究   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏高原东南缘地下深部结构的研究对了解青藏高原的变形机制和动力学过程具有重要意义.本文利用四川、云南固定台站记录到的远震波形资料,首先采用接收函数H-k叠加方法获得青藏高原东南缘台站下方的地壳厚度和波速比.进而利用接收函数一次转换波和多次波幅度信息确定了青藏高原东南缘Moho面上的S波速度和密度跃变.研究结果表明:研究区由南到北地壳厚度逐渐增加,从永德、沧源、孟连地区的33 km左右增至巴塘地区的69.7 km左右,厚度变化了近乎37 km.四川盆地和松潘甘孜块体南部的姑咱地区具有高泊松比、速度密度跃变较小特征,表明这两个地区含有较多铁镁物质.腾冲地区、龙门山西侧的汶川地区、四川盆地西南缘的沐川地区以及则木河断裂的石门坎至东川地区同属于高泊松比、速度密度跃变较大,显示这些地区壳内存在部分熔融.  相似文献   

15.
基于贝叶斯理论的接收函数与环境噪声联合反演   总被引:11,自引:5,他引:6       下载免费PDF全文
基于Bayes反演理论(Tarantola,1987,2005),在接收函数非线性复谱比反演方法基础上(刘启元等,1996),本文讨论了接收函数与地震环境噪声Rayleigh波相速度频散的联合反演.本文采用修正后的快速广义反射/透射系数方法(Pei et al., 2008,2009) 计算Rayleigh波相速度频散, 并引入地壳泊松比的全局性搜索.数值检验表明:(1)接收函数与环境噪声的联合反演能够有效地解决反演结果对初始模型依赖的问题,即使对地壳速度结构仅有非常粗略的初始估计(例如,垂向均匀模型),本文方法仍能给出模型参数的可靠估计;(2)由于环境噪声与接收函数在频带上的适配性明显优于地震面波,接收函数与环境噪声的非线性联合反演能更好地约束台站下方近地表的速度结构;对于周期范围为2~40s的环境噪声相速度频散,利用本文方法能够可靠推测台站下方0~80 km深度范围的S波速度结构, 其浅表速度结构的分辨率可达到1 km; (3)本文方法能够可靠地估计地壳泊松比,泊松比的全局性搜索有助于合理解释接收函数和环境噪声的面波频散数据.利用本文方法对川西台阵KWC05台站观测的接收函数与环境噪声的联合反演表明,该台站下方地壳厚度为44 km,上地壳具有明显的高速结构,24~42 km范围的中下地壳具有低速结构.该台站下方地壳的平均泊松比为0.262,壳内低速带的泊松比为0.27.  相似文献   

16.
利用云南及其邻区59个宽频地震台站记录到的30°~100°远震资料,采用P波接收函数方法对云南地区的地壳厚度和地壳平均泊松比分布进行分析。研究结果显示:用H-k扫描和人工读取震相到时两种方法得到的云南地区地壳厚度和泊松比分布情况较为吻合。研究区域内Moho面埋深南浅北深,横向变化达30~40 km。在川滇菱形块体东南缘,地壳厚度等值线呈东南向舌状突出。泊松比呈块体分布特征,断裂两侧差异显著。高泊松比的分布主要集中在滇缅泰块体内和研究区域北部以及小江断裂附近,这与该区处于印度板块与欧亚板块碰撞俯冲前缘的特殊地理位置有关。  相似文献   

17.
收集整理2007年以来延边地震台记录的113个远震数字波形资料,采用远震接收函数反演延边地震台下方地壳结构,运用H-Kappa叠加方法,计算得到台站下方地壳厚度和泊松比.采用全球平均地壳模型作为初始模型,反演台站下方0-100 km的S波速结构.反演结果表明,延边地震台下方地壳厚度为30.8 km,波速比为1.84,泊松比较高,为0.29.在台站下方15-20 km及25-30 km处存在低速层.  相似文献   

18.
选取重庆地震台2010年至2012年记录的60个远震宽频带数字地震记录,采用频率域反褶积法获得台站的接收函数,采用H-Kappa叠加方法反演台站下方的地壳厚度和泊松比,作为台站下方波速反演的约束条件,以减少反演的非唯一性.计算结果显示,重庆地震台下方地壳厚度为42 km,与中国大陆中西部地区Moho面深度在38-45 km保持一致.该研究对增强该区的深部地质构造特征、分析孕震机制等具有积极意义.  相似文献   

19.
本文使用沿川滇块体东边界主要断裂带(安宁河、则木河、小江断裂带)布设的37个临时台站和四川区域台网14个固定台站记录的远震波形资料,用时间域迭代反褶积方法提取接收函数,采用接收函数H-κ反演方法得到了30个台站下方的地壳厚度和泊松比。研究结果表明,川滇块体东边界的地壳厚度表现为自西向东由60km左右向华南块体(35km左右)逐渐减薄的过渡带特征:以安宁河—大凉山断裂带为界,以西地壳厚度平均在54km左右,以东作为华南块体与川滇块体的交界前缘,地壳厚度在42~48km之间。以小江断裂带与则木河断裂带交汇处为界,其南北两侧的地壳岩性和组分差异明显。小江断裂带北段泊松比值在0.20~0.27之间,表明其地壳物质组分主要为中基性岩石。而以北的安宁河、则木河及马边—盐津断裂带的泊松比值大多位于0.27~0.32之间。安宁河—则木河断裂带附近多数台站的泊松比值0.30,可能是部分熔融造成的。  相似文献   

20.
芦山与汶川地震之间存在约40 km的地震空区.震源区和地震空区的深部构造背景的研究对深入了解中强地震的深部孕育环境及地震空区的地震活动性具有重要科学意义.利用本小组布设的15个临时观测地震台以及21个芦山科考台站和21个四川省地震局固定台站记录的远震数据,用H-K叠加方法得到各个台站的地壳厚度和平均泊松比,并构建了接收函数共转换点(CCP)偏移叠加图像以及反演得到台站下方的S波速度模型.我们的结果揭示了震源区和地震空区地壳结构特征差异:(1)汶川震源区的地壳平均泊松比为~0.28;芦山震源区为~0.29;而地震空区处于泊松比变化剧烈的区域;(2)汶川地震与芦山地震的震源区以西下方的Moho面呈现深度上的突变(这与前人的研究成果基本一致),分别从~44 km突变到~59 km,~40 km突变到~50 km,而地震空区地壳平均厚度呈现渐变性变化;(3)地震空区Moho面下凹且具有低速的上地壳.综合一维S波速度结构和H-k以及CCP的初步结果,这可能显示汶川地震的发震断裂在深部方向上向西倾斜并形成切割整个地壳的大型断裂;芦山地震则可能是由于上、下地壳解耦引起的;而地震空区处于两种地震形成机制控制区域的过渡带中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号