首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic properties of saturated porous rocks with aligned fractures   总被引:4,自引:0,他引:4  
Elastic properties of fluid saturated porous media with aligned fractures can be studied using the model of fractures as linear-slip interfaces in an isotropic porous background. Such a medium represents a particular case of a transversely isotropic (TI) porous medium, and as such can be analyzed with equations of anisotropic poroelasticity. This analysis allows the derivation of explicit analytical expressions for the low-frequency elastic constants and anisotropy parameters of the fractured porous medium saturated with a given fluid. The five elastic constants of the resultant TI medium are derived as a function of the properties of the dry (isotropic) background porous matrix, fracture properties (normal and shear excess compliances), and fluid bulk modulus. For the particular case of penny-shaped cracks, the expression for anisotropy parameter ε has the form similar to that of Thomsen [Geophys. Prospect. 43 (1995) 805]. However, contrary to the existing view, the compliance matrix of a fluid-saturated porous-fractured medium is not equivalent to the compliance matrix of any equivalent solid medium with a single set of parallel fractures. This unexpected result is caused by the wave-induced flow of fluids between pores and fractures.  相似文献   

2.
A vertically fractured transversely isotropic (VFTI) elastic medium is one in which any number of sets of vertical aligned fractures (each set has its normal lying in the horizontal x1, x2‐plane) pervade the medium and the sets of aligned fractures are the only features of the medium disturbing the axi‐symmetry about the x3‐axis implying that in the absence of fractures, the background medium is transversely isotropic (TI). Under the assumptions of long wavelength equivalent medium theory, the compliance matrix of a fractured medium is the sum of the background medium's compliance matrix and a fracture compliance matrix. For sets of parallel rotationally symmetric fractures (on average), the fracture compliance matrix is dependent on 3 parameters − its normal and tangential compliance and its strike direction. When one fracture set is present, the medium is orthorhombic and the analysis is straightforward. When two (non‐orthogonal) or more sets are present, the overall medium is in general elastically monoclinic; its compliance tensor components are subject to two equalities yielding an 11 parameter monoclinic medium. Constructing a monoclinic VFTI medium with n embedded vertical fracture sets, requires 5 TI parameters plus 3×n fracture set parameters. A deconstruction of such an 11 parameter monoclinic medium involves using its compliance tensor to find a background transversely isotropic medium and several sets of vertical fractures which, in the long wavelength limit, will behave exactly as the original 11 parameter monoclinic medium. A minimal deconstruction, would be to determine, from the 11 independent components, the transversely isotropic background (5 parameters) and two fracture sets (specified by 2 × 3 = 6 parameters). Two of the background TI medium's compliance matrix components are known immediately by inspection, leaving nine monoclinic components to be used in the minimal deconstruction of the VFTI medium. The use of the properties of a TI medium, which are linear relations on its compliance components, allows the deconstruction to be reduced to solving a pair of non‐linear equations on the orientations of two fracture sets. A single root yielding a physically meaningful minimum deconstruction yields a unique minimal representation of the monoclinic medium as a VFTI medium. When no such root exists, deconstruction requires an additional fracture set and uniqueness is lost. The boundary between those monoclinic media that have a unique minimal representation and those that do not is yet to be determined.  相似文献   

3.
Any set of isotropic layers is equivalent, in the long wavelength limit, to a unique transversely isotropic (TI) layer; to find the elastic moduli of that layer is a solved problem. The converse problem is to find a set of isotropic layers equivalent to a given TI media. Here, explicit necessary and sufficient conditions on the TI stiffness moduli for the existence of an equivalent set of isotropic layers are found by construction of a minimal decomposition consisting of either two or three isotropic constituent layers. When only two constituents are required, their elastic properties are uniquely determined. When three constituents are required, two have the same Poisson's ratio and the same thickness fraction, and even then there is a one-parameter family of satisfactory minimal decompositions. The linear slip model for fractured rock (aligned fractures in an isotropic background) yields a restricted range of transverse isotropy dependent on only four independent parameters. If the ratio of the normal to tangential fracture compliance is small enough, the medium is equivalent to thin isotropic layering and in general its minimal decomposition consists of three constituents.  相似文献   

4.
Fractures in elastic media add compliance to a rock in the direction normal to the fracture strike. Therefore, elastic wave velocities in a fractured rock will vary as a function of the energy propagation direction relative to the orientation of the aligned fracture set. Anisotropic Thomson–Haskell matrix Rayleigh-wave equations for a vertically transverse isotropic media can be used to model surface-wave dispersion along the principal axes of a vertically fractured and transversely isotropic medium. Furthermore, a workflow combining first-break analysis and azimuthal anisotropic Rayleigh-wave inversion can be used to estimate P-wave and S-wave velocities, Thomsen's ε, and Thomsen's δ along the principal axes of the orthorhombic symmetry. In this work, linear slip theory is used to map our inversion results to the equivalent vertically fractured and transversely isotropic medium coefficients. We carried out this inversion on a synthetic example and a field example. The synthetic data example results show that joint estimation of S-wave velocities with Thomsen's parameters ε and δ along normal and parallel to the vertical fracture set is reliable and, when mapped to the corresponding vertically fractured and transversely isotropic medium, provides insight into the fracture compliances. When the inversion was carried out on the field data, results indicated that the fractured rock is more compliant in the azimuth normal to the visible fracture set orientation and that the in situ normal fracture compliance to tangential fracture compliance ratio is less than half, which implies some cementation may have occurred along the fractures. Such an observation has significant implications when modelling the transport properties of the rock and its strength. Both synthetic and field examples show the potential of azimuthal anisotropic Rayleigh-wave inversion as the method can be further expanded to a more general case where the vertical fracture set orientation is not known a priori.  相似文献   

5.
裂缝诱导HTI双孔隙介质中的裂缝参数分析   总被引:1,自引:0,他引:1       下载免费PDF全文
裂缝诱导HTI双孔隙介质模型是将一组垂直排列的裂缝系统嵌入到统计各向同性的孔隙岩石基质系统中而建立的.为了研究裂缝参数对地震波在该模型中传播规律的影响,本文分别对裂缝弱度、裂缝孔隙度和裂缝渗透率这三个主要的裂缝参数进行了分析研究.数值结果表明,裂缝诱导HTI双孔隙介质中,裂缝弱度越大,介质的各向异性强度越强;与基质孔隙系统相比,裂缝系统孔隙度对介质等效孔隙度的影响很小,而裂缝系统渗透率的增大则将显著提高介质在裂缝发育方向上的等效渗透率,这符合对裂缝系统"低孔"、"高渗"特性的认识.此外,裂缝系统渗透率的增大也使慢纵波的振幅显著增强.  相似文献   

6.
Media containing aligned cracks or ellipsoidal inclusions as well as media consisting of sequences of isotropic layers show transverse isotropy with respect to elastic wave propagation. However, the transversely isotropic media which are equivalent to media containing aligned inclusions do not necessarily have to be representable by sequences of stable isotropic layers. These transversely isotropic media can be modelled by such sequences if - and only if - several stability conditions are satisfied. Important parameters determining whether these conditions are satisfied are the aspect ratio of the inclusions and the material filling the inclusions, the‘fluid’. An analytical expression describing the range of aspect ratios for which the constraints are satisfied can be derived. This expression (which is a good approximation for several crack models) and numerical calculations show that media containing water-filled inclusions can be represented by sequences of stable isotropic layers if the inclusions have aspect ratios less than 0.1. The limiting aspect ratio decreases for a decreasing ratio of the bulk modulus of the fluid to the shear modulus of the matrix material. Finally, media containing dry inclusions of any aspect ratio cannot be modelled by thin isotropic layering. These results depend only weakly on the crack density and on the matrix material. The representation of crack-induced anisotropy by layer-induced anisotropy can be used to classify crack-induced anisotropy and might be useful in the separation of the cause of anisotropy and the determination of the nature of the fluid.  相似文献   

7.
Certain crack-influence parameters of Sayers and Kachanov are shown to be directly related to Thomsen's weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar reservoirs, i.e., those anisotropic reservoirs having two axes that are equivalent but distinct from the third axis), especially for horizontal transversely isotropic seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the Earth's surface. The approach presented suggests one method of inverting for fracture density from wave speed data. A significant fraction of the technical effort in the paper is devoted to showing how to predict the angular location of the true peak (or trough) of the quasi-SV-wave for polar media and especially how this peak is related to another angle that is very easy to compute. The axis of symmetry is always treated here as the x 3-axis for either vertical transversely isotropic symmetry (due, for example, to horizontal cracks), or horizontal transversely isotropic symmetry (due to aligned vertical cracks). Then, the meaning of the stiffnesses is derived from the fracture analysis in the same way for vertical transversely isotropic and horizontal transversely isotropic media, but for horizontal transverse isotropy the wave speeds relative to the Earth's surface are shifted by  90o  in the plane perpendicular to the aligned vertical fractures. Skempton's poroelastic coefficient B is used as a general means of quantifying the effects of fluids inside the fractures. Explicit Biot-Gassmann-consistent formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either vertical transversely isotropic or horizontal transversely isotropic symmetry of the reservoir.  相似文献   

8.
裂缝型储层流体识别方法   总被引:2,自引:0,他引:2       下载免费PDF全文
裂缝型储层的描述包括预测裂缝分布特征和识别裂隙充填物.依据等效介质理论计算的纵波速度随裂缝密度的增大而减小.正演地震记录显示,裂缝介质含气时反射振幅最大,且变化程度比含油或含水时大.叠前方位AVO反演所得的各向异性梯度Bani与裂缝密度成正比,可用于描述有效裂缝发育强度.对于不同的裂缝密度,各向异性梯度Bani与各向同性梯度Biso的比值I(1)fluid近似为常数,且对流体敏感.经裂缝纵横比和背景介质拉梅常数修正后,流体因子Ifluid既不随纵横比变化,又不受背景介质的影响,是裂缝型储层敏感的流体识别因子.在塔里木盆地塔北哈拉哈塘地区热瓦普区块碳酸盐岩储层裂缝发育区域,运用该参数在井点处的流体识别效果与钻井结果一致.  相似文献   

9.
长波长假设条件下,各向同性背景地层中发育一组平行排列的垂直裂缝可等效为具有水平对称轴的横向各向同性(HTI)介质.基于不同观测方位的岩石地震响应特征变化,宽方位地震数据不仅可实现裂缝岩石弹性参数与各向异性参数的预测,同时也蕴含着丰富的孔隙度等储层物性参数信息.本文结合实际地震资料提出了贝叶斯框架下岩石物理驱动的储层裂缝参数与物性参数概率地震联合反演方法,首先基于AVAZ反演裂缝岩石的弹性参数与各向异性参数,并在此基础上通过统计岩石物理模型表征孔隙度、裂缝密度等各向异性介质储层参数与裂缝岩石参数的相互关联,并采用马尔科夫链蒙特卡洛(MCMC)抽样方法进行大量样本的随机模拟,使用期望最大化(EM)算法估计后验条件概率分布,最终寻找最大后验条件概率对应的孔隙度、裂缝密度等HTI裂缝介质储层参数即为反演结果.测井及实际地震数据处理表明,该方法能够稳定合理地从方位地震资料中获取裂缝岩石弹性参数与各向异性参数,并提供了一种较为可靠的孔隙度、裂缝密度等裂缝介质储层参数概率地震反演方法.  相似文献   

10.
We consider a transversely isotropic medium that is long-wave equivalent to a stack of thin, parallel, isotropic layers and is obtained using the Backus average. In such media, we analyse the relations among anisotropy parameters; Thomsen parameters, ε and δ, and a new parameter ϕ. We discuss the last parameter and show its essential properties; it equals 0 in the case of isotropy of equivalent medium and/or constant Lamé coefficient λ in layers. The second property occurs to make ϕ sensitive to variations of λ in thin-bedded sequences. According to Gassmann, in isotropic media the variation of fluid content affects only the Lamé coefficient λ, not μ; thus, the sensitivity to changes of λ is an essential property in the context of possible detection of fluids. We show algebraically and numerically that ϕ is more sensitive to these variations than ε or δ. Nevertheless, each of these parameters is dependent on the changes of μ; to understand this influence, we exhibit comprehensive tables that illustrate the behaviour of anisotropy parameters with respect to specific variations of λ and μ. The changes of μ in layers can be presented by the Thomsen parameter γ that depends on them solely. Hence, knowing the values of elasticity coefficients of equivalent transversely isotropic medium, we may compute ϕ and γ, and based on the aforementioned tables, we predict the expected variation of λ; in this way, we propose a new method of possible fluid detection. Also, we show that the prior approach of possible detection of fluids, proposed by Berryman et al., may be unreliable in specific cases. To establish our results, we use the Monte Carlo method; for the range and chosen variations of Lamé coefficients λ and μ – relevant to sandstones – we generate these coefficients in thin layers and, after the averaging process, we obtain an equivalent transversely isotropic medium. We repeat that process numerous times to get many equivalent transversely isotropic media, and – for each of them  – we compute their anisotropy parameters. We illustrate ϕ, ε and δ in the form of cross-plots that are relevant to the chosen variations of λ and μ. Additionally, we present a table with the computed ranges of anisotropy parameters that correspond to different variations of Lamé coefficients.  相似文献   

11.
An approach to determining the effective elastic moduli of rocks with double porosity is presented. The double‐porosity medium is considered to be a heterogeneous material composed of a homogeneous matrix with primary pores and inclusions that represent secondary pores. Fluid flows in the primary‐pore system and between primary and secondary pores are neglected because of the low permeability of the primary porosity. The prediction of the effective elastic moduli consists of two steps. Firstly, we calculate the effective elastic properties of the matrix with the primary small‐scale pores (matrix homogenization). The porous matrix is then treated as a homogeneous isotropic host in which the large‐scale secondary pores are embedded. To calculate the effective elastic moduli at each step, we use the differential effective medium (DEM) approach. The constituents of this composite medium – primary pores and secondary pores – are approximated by ellipsoidal or spheroidal inclusions with corresponding aspect ratios. We have applied this technique in order to compute the effective elastic properties for a model with randomly orientated inclusions (an isotropic medium) and aligned inclusions (a transversely isotropic medium). Using the special tensor basis, the solution of the one‐particle problem with transversely isotropic host was obtained in explicit form. The direct application of the DEM method for fluid‐saturated pores does not account for fluid displacement in pore systems, and corresponds to a model with isolated pores or the high‐frequency range of acoustic waves. For the interconnected secondary pores, we have calculated the elastic moduli for the dry inclusions and then applied Gassmann's tensor relationships. The simulation of the effective elastic characteristic demonstrated that the fluid flow between the connected secondary pores has a significant influence only in porous rocks containing cracks (flattened ellipsoids). For pore shapes that are close to spherical, the relative difference between the elastic velocities determined by the DEM method and by the DEM method with Gassmann's corrections does not exceed 2%. Examples of the calculation of elastic moduli for water‐saturated dolomite with both isolated and interconnected secondary pores are presented. The simulations were verified by comparison with published experimental data.  相似文献   

12.
结合有限差分方法和等效介质理论,模拟了离散分布裂缝介质中地震波的传播. 基于等效介质理论,利用二维有限差分实现封闭裂缝的离散分布;裂缝可以处理成固体岩石中的高度柔性界面,并可以用线性滑动或者位移间断模型进行裂缝的物理描述. 对于含有多组裂隙的破裂固体,其有效柔度可以认为是固体骨架背景柔度和裂缝附加柔度之和. 在一阶近似条件下,固体骨架和裂缝参数可以通过有效各向异性系数联系起来,有效各向异性系数决定了各向异性(裂缝效应)对于地震波传播的影响. 通过与射线理论方法的对比检验,说明本文提出的模拟方法的有效性,并通过几个数值算例说明本方法可有效模拟不同的裂缝分布效应. 结果表明,即使在裂缝密度很小的情况下,具有相同裂缝密度的不同的空间分布可以产生不同的波场特征. 同时,也验证了不同裂缝尺度对波长的不同影响,以及裂缝尺度具有幂率分布(分形)时,尺度对波场的影响. 最后得出结论:在运用建立在等效介质理论基础上的地震各向异性概念来描述裂缝固体的特征时,要倍加小心,等效介质理论中尚未合理处理的裂缝尺度和空间分布对波的传播特征具有重要的影响.  相似文献   

13.
Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen’s weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen’s WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen’s WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen’s WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.  相似文献   

14.
15.
We study the propagation of elastic waves that are generated in a fluid‐filled borehole surrounded by a cracked transversely isotropic medium. In the model studied the anisotropy and borehole axes coincide. To obtain the effective elastic moduli of a cracked medium we have applied Hudson's theory that enables the determination of the overall properties as a function of the crack orientation in relation to the symmetry axis of the anisotropic medium. This theory takes into account the hydrodynamic mechanism of the elastic‐wave attenuation caused by fluid filtration from the cracks into a porous matrix. We have simulated the full waveforms generated by an impulse source of finite length placed on the borehole axis. The kinematic and dynamic parameters of the compressional, shear and Stoneley waves as functions of the matrix permeability, crack orientation and porosity were studied. The modelling results demonstrated the influence of the crack‐system parameters (orientation and porosity) on the velocities and amplitudes of all wave types. The horizontally orientated cracks result in maximal decrease of the elastic‐wave parameters (velocities and amplitudes). Based on the fact that the shear‐ and Stoneley‐wave velocities in a transversely isotropic medium are determined by different shear moduli, we demonstrate the feasibility of the acoustic log to identify formations with close to horizontal crack orientations.  相似文献   

16.
Conventional ray tracing for arbitrarily anisotropic and heterogeneous media is expressed in terms of 21 elastic moduli belonging to a fixed, global, Cartesian coordinate system. Our principle objective is to obtain a new ray-tracing formulation, which takes advantage of the fact that the number of independent elastic moduli is often less than 21, and that the anisotropy thus has a simpler nature locally, as is the case for transversely isotropic and orthorhombic media. We have expressed material properties and ray-tracing quantities (e.g., ray-velocity and slowness vectors) in a local anisotropy coordinate system with axes changing directions continuously within the model. In this manner, ray tracing is formulated in terms of the minimum number of required elastic parameters, e.g., four and nine parameters for P-wave propagation in transversely isotropic and orthorhombic media, plus a number of parameters specifying the rotation matrix connecting local and global coordinates. In particular, we parameterize this rotation matrix by one, two, or three Euler angles. In the ray-tracing equations, the slowness vector differentiated with respect to traveltime is related explicitly to the corresponding differentiated slowness vector for non-varying rotation and the cross product of the ray-velocity and slowness vectors. Our formulation is advantageous with respect to user-friendliness, efficiency, and memory usage. Another important aspect is that the anisotropic symmetry properties are conserved when material properties are determined in arbitrary points by linear interpolation, spline function evaluation, or by other means.  相似文献   

17.
石玉涛  刘澜波  高原 《地震》2015,35(2):1-10
在复杂区域应力场的作用下, 大范围扩容各向异性(extensive-dilatancy anisotropy, EDA)造成的裂隙定向排列形成了地壳内部介质的不均匀性。 因此, 地壳介质各向异性的描述不仅限于横向各向同性(transversely isotropic, TI)的理论。 我们首先利用自相关函数随机扰动得到水平向小尺度速度不均匀, 然后利用这种不均匀性描述地壳介质中EDA裂隙定向排列所造成的介质各向异性, 利用数值模拟弹性波在该介质中的传播过程验证了利用介质的不均匀性构建介质的各向异性是一个有效、 可靠的方法。 可以将此方法应用到复杂地壳介质结构中, 了解地震波在复杂地壳各向异性介质中的传播特征。  相似文献   

18.
Porous solid is in contact with a cracked elastic solid at a plane interface between them. For the presence of vertically aligned microcracks, the elastic solid behaves transversely isotropic to wave propagation. The coefficients of elastic anisotropy depend on the crack density and crack porosity in the medium. A loose bonding is considered between the two solids so that a limiting case could be the welded contact. At the plane interface, the imperfection in welded bonding is represented by tangential slipping and, hence, results in the dissipation of a part of strain energy. Three types of waves propagate in an isotropic fluid-saturated porous medium, which are considered for incidence at the interface. Incidence of a wave results in three reflected waves and two refracted waves. Partition of incident energy among the reflected and refracted waves is studied for each incidence, varying from normal to grazing directions. Numerical example calculates the energy shares of reflected and refracted waves at the plane interface between water-saturated sandstone and basalt. These energy shares are computed and analyzed for different values of crack parameters as well as loose bonding parameter.  相似文献   

19.
We use residual moveouts measured along continuous full azimuth reflection angle gathers, in order to obtain effective horizontal transversely isotropic model parameters. The angle gathers are generated through a special angle domain imaging system, for a wide range of reflection angles and full range of phase velocity azimuths. The estimation of the effective model parameters is performed in two stages. First, the background horizontal transversely isotropic (HTI)/vertical transversely isotropic (VTI) layered model is used, along with the values of reflection angles, for converting the measured residual moveouts (or traveltime errors) into azimuthally dependent normal moveout (NMO) velocities. Then we apply a digital Fourier transform to convert the NMO velocities into azimuthal wavenumber domain, in order to obtain the effective HTI model parameters: vertical time, vertical compression velocity, Thomsen parameter delta and the azimuth of the medium axis of symmetry. The method also provides a reliability criterion of the HTI assumption. The criterion shows whether the medium possesses the HTI type of symmetry, or whether the azimuthal dependence of the residual traveltime indicates to a more complex azimuthal anisotropy. The effective model used in this approach is defined for a 1D structure with a set of HTI, VTI and isotropic layers (with at least one HTI layer). We describe and analyse the reduction of a multi‐layer structure into an equivalent effective HTI model. The equivalent model yields the same NMO velocity and the same offset azimuth on the Earth's surface as the original layered structure, for any azimuth of the phase velocity. The effective model approximates the kinematics of an HTI/VTI layered structure using only a few parameters. Under the hyperbolic approximation, the proposed effective model is exact.  相似文献   

20.
Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back‐diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half‐life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号