首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高频面波方法的若干新进展   总被引:12,自引:5,他引:7       下载免费PDF全文
面波多道分析方法(MASW)通过分析高频瑞雷波确定浅地表剪切波速度.在过去的20年中,由于该方法具有非侵入性、无损、高效及价格低的特点,越来越受到浅地表地球物理和地质工程学界的重视,视为未来最有希望的技术之一.这篇综述论文将介绍中国地质大学(武汉)浅地表地球物理团队近年来在研究高频面波的传播理论和应用中取得的部分成果.非几何波是一种仅存在于浅地表介质,尤其是未固结的沉积物中的独特的地震波.它的存在对快速而准确地获得表层S波速度有一定价值.我们的研究表明非几何波是一种具有频散特性的泄漏波.泄漏波的存在可能导致将其误认为瑞雷波的基阶或高阶能量,从而造成模式误判.这种模式误判会导致错误的反演结果.我们通过求取高基阶分离后的瑞雷波格林函数证明虚震源法瑞雷波勘探的可行性.这个结果将极大地降低野外瑞雷波勘探成本.勒夫波多道分析方法(MALW)中未知参数比瑞雷波的少,这使得勒夫波的频散曲线比瑞雷波的简单.因此,勒夫波反演更稳定,非唯一性更低.勒夫波数据生成的能量图像通常比瑞雷波的清晰,并具有更高的分辨率,从而可以更容易地拾取精确的勒夫波的相速度.利用雅克比矩阵分析波长与探测深度的关系表明对相同波长的基阶模式而言,瑞雷波的探测深度是勒夫波的1.3~1.4倍;而两种波的相同波长的高阶模式波的探测深度相同.我们也尝试了时间域勒夫波反演.按照勒夫波分辨率将地球模型剖分成了不同尺寸的块体,利用反卷积消除了地震子波对勒夫波波形的影响,通过更新每个块体的S波速度来拟合勒夫波波形,从而获得地下S波速度模型.该方法不基于水平层状模型假设,适用于任意二维介质模型.  相似文献   

2.
Rayleigh-wave phase velocities have been utilized to determine shear (S)-wave velocities in near-surface geophysics since early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the S-wave velocity of the surface layer is higher than some of the layers below, however, the Rayleigh-wave phase velocity in a high-frequency range calculated by existing algorithms approaches the lowest S-wave velocity among the layers above the half-space, rather than a value related to the S-wave velocity of the surface layer. According to our numerical modeling results based on wave equation, trends of the Rayleigh-wave dispersive energy approach about a 91% of the S-wave velocity of the surface layer at a high-frequency range when its wavelength is much shorter than the thickness of the surface layer, which cannot be fitted by a dispersion curve calculated by existing algorithms. We propose a method to calculate Rayleigh-wave phase velocities of models with a high-velocity surface layer by considering its penetration depth. We build a substituted model that only contains the layer with the lowest S-wave velocity among the layers above the half-space and the layers above it. We use the substituted model to replace the original model to calculate phase velocities when the Rayleigh-wave wavelength is not long enough to penetrate the lowest S-wave velocity layer. Several synthetic models are used to verify fitness between the dispersion curve calculated by our proposed method and the trend of the highest dispersive energy. Examples of inversion also demonstrate high accuracy of using our method as the forward calculation method during the inversions.  相似文献   

3.
Fractures in elastic media add compliance to a rock in the direction normal to the fracture strike. Therefore, elastic wave velocities in a fractured rock will vary as a function of the energy propagation direction relative to the orientation of the aligned fracture set. Anisotropic Thomson–Haskell matrix Rayleigh-wave equations for a vertically transverse isotropic media can be used to model surface-wave dispersion along the principal axes of a vertically fractured and transversely isotropic medium. Furthermore, a workflow combining first-break analysis and azimuthal anisotropic Rayleigh-wave inversion can be used to estimate P-wave and S-wave velocities, Thomsen's ε, and Thomsen's δ along the principal axes of the orthorhombic symmetry. In this work, linear slip theory is used to map our inversion results to the equivalent vertically fractured and transversely isotropic medium coefficients. We carried out this inversion on a synthetic example and a field example. The synthetic data example results show that joint estimation of S-wave velocities with Thomsen's parameters ε and δ along normal and parallel to the vertical fracture set is reliable and, when mapped to the corresponding vertically fractured and transversely isotropic medium, provides insight into the fracture compliances. When the inversion was carried out on the field data, results indicated that the fractured rock is more compliant in the azimuth normal to the visible fracture set orientation and that the in situ normal fracture compliance to tangential fracture compliance ratio is less than half, which implies some cementation may have occurred along the fractures. Such an observation has significant implications when modelling the transport properties of the rock and its strength. Both synthetic and field examples show the potential of azimuthal anisotropic Rayleigh-wave inversion as the method can be further expanded to a more general case where the vertical fracture set orientation is not known a priori.  相似文献   

4.
A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson’s ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model.  相似文献   

5.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   

6.
High-frequency (≥ 2 Hz) Rayleigh-wave phase velocities have been utilized to determine shear-wave velocities in near-surface geophysics since the early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the earth model contains a low-velocity half-space, however, some roots of the dispersion equation turn out to be complex numbers, which makes phase velocities disappear at some frequencies. When encountering this situation, the common practice is to append an additional high velocity layer as the half-space to the model to make the roots real or use the real parts of complex roots as Rayleigh-wave phase velocities. The correctness of the first method has been verified. The correctness of the second method, however, remains to be unproved. We use synthetic data generated by numerical modeling of the wave equation to verify the correctness of the second method. In this paper, we firstly discuss the reasons that only complex numbers of the dispersion equation exist at some frequencies when an earth model contains a low velocity half-space. Then we discuss how the nearest offset affects a synthetic model and recommend an optimal nearest offset in generating synthetic data that are close to real-world situations. Several synthetic models are used to verify correctness of using real parts of complex roots as Rayleigh-wave phase velocities when an earth model contains a low velocity layer as the half-space.  相似文献   

7.
In recent years, surface-wave analysis method has been developed rapidly in many fields. Multichannel analysis of surface waves can provide near-surface one-dimensional shear-wave velocity profiles. Because linearized inversion of surface-wave dispersion curves relies heavily on the choice of the initial model, setting an inappropriate initial model can lead to poor inversion results, or even failure of inversion. However, it is difficult to establish a reasonable initial model without a priori information, which is unavailable in most cases. To cope with this problem, a multiscale linearized inversion method is proposed for surface-wave dispersion curves inversion. In contrast with the traditional single-scale linearized inversion, the key idea of the proposed multiscale surface-wave inversion method is the introduction of a merging and splitting process of layers. After every scale inversion, the merging and splitting operations automatically optimize the inversion model, making it gradually approach to a reasonable subsurface stratification. Multiscale surface-wave inversion method reduces the difficulty of establishing the initial model and has high computational efficiency. In addition, it has strong ability to identify high-velocity or low-velocity interlayers and thin layers, especially suited for the geological conditions with obvious stratification. In synthetic tests, the proposed method was compared with the single-scale surface-wave inversion and particle swarm optimization algorithm to demonstrate the effectiveness and practicability of multiscale surface-wave inversion method. We also applied the multiscale surface-wave inversion method to field seismic data acquired in Guizhou, China and Texas, USA. Borehole and crosshole test data were compared with the inversion results of field data to prove the reliability of the proposed method.  相似文献   

8.
— The group-velocity distribution beneath the Arabian Plate is investigated using Love and Rayleigh waves. We obtained a balanced path coverage using seismograms generated by earthquakes located along the plate boundaries. We measured Love- and Rayleigh-wave group-velocity dispersion using multiple filter analysis and then performed a tomographic inversion using these observations to estimate lateral group velocity variations in the period range of 5–60?s. The Love- and Rayleigh-wave results are consistent and show that the average group velocity across Arabia increases with increasing period. The tomographic results also delineate first-order regional structure heterogeneity as well as the sharp transition between the Arabian shield and the Arabian platform. Systematic differences are observed in the distribution of the short-period group velocities across the two provinces, which are consistent with surface geology. The slower velocities in the platform reveal the imprint of its thick sedimentary section, while faster velocities correlate well with the exposed volcanic flows in the shield. Shear-wave velocity models for the two regions, obtained from the inversion of the group velocities, confirm results from previous studies of higher S-wave velocity in the upper crust beneath the shield. This may be due to the present remnants of the oceanic crust (ophiolite belts) associated with the island arcs evolutionary model of the Arabian shield.¶The mapping of the surface-wave group velocity using a large data can be used in constraining the regional structure at existing and planned broadband stations deployed in this tectonically complex region as part of the seismic monitoring under CTBT.  相似文献   

9.
For the exploration of near-surface structures, seismic and geoelectric methods are often applied. Usually, these two types of method give, independently of each other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which feads to much better parameter estimations of the model than the independent inversions. A suitable seismic method for exploring near-surface structures is the use of dispersive surface waves: the dispersive characteristics of Rayleigh and Love surface waves depend strongly on the structural and petrophysical (seismic velocities) features of the near-surface Underground. Geoelectric exploration of the structure Underground may be carried out with the well-known methods of DC resistivity sounding, such as the Schlumberger, the radial-dipole and the two-electrode arrays. The joint inversion algorithm is tested by means of synthetic data. It is demonstrated that the geoelectric joint inversion of Schlumberger, radial-dipole and two-electrode sounding data yields more reliable results than the single inversion of a single set of these data. The same holds for the seismic joint inversion of Love and Rayleigh group slowness data. The best inversion result is achieved by performing a joint inversion of both geoelectric and surface-wave data. The effect of noise on the accuracy of the solution for both Gaussian and non-Gaussian (sparsely distributed large) errors is analysed. After a comparison between least-square (LSQ) and least absolute deviation (LAD) inversion results, the LAD joint inversion is found to be an accurate and robust method.  相似文献   

10.
—?We present results from a large-scale study of surface-wave group velocity dispersion across the Middle East, North Africa, southern Eurasia and the Mediterranean. Our database for the region is populated with seismic data from regional events recorded at permanent and portable broadband, three-component digital stations. We have measured the group velocity using a multiple narrow-band filter on deconvolved displacement data. Overall, we have examined more than 13,500 seismograms and made good quality dispersion measurements for 6817 Rayleigh- and 3806 Love-wave paths. We use a conjugate gradient method to perform a group-velocity tomography. Our current results include both Love- and Rayleigh-wave inversions across the region for periods from 10 to 60 seconds. Our findings indicate that short-period structure is sensitive to slow velocities associated with large sedimentary features such as the Mediterranean Sea and Persian Gulf. We find our long-period Rayleigh-wave inversion is sensitive to crustal thickness, such as fast velocities under the oceans and slow along the relatively thick Zagros Mts. and Turkish-Iranian Plateau. We also find slow upper mantle velocities along known rift systems. Accurate group velocity maps can be used to construct phase-matched filters along any given path. The filters can improve weak surface wave signals by compressing the dispersed signal. The signals can then be used to calculate regionally determined M S measurements, which we hope can be used to extend the threshold of m b :M S discriminants down to lower magnitude levels. Other applications include using the group velocities in the creation of a suitable background model for forming station calibration maps, and using the group velocities to model the velocity structure of the crust and upper mantle.  相似文献   

11.
深反射地震剖面法为了获取深部结构特征常常采取大的偏移距采集数据.目前公开发表的相关资料中,鲜有利用深反射地震炮集数据获取近地表的结构特征.为此,本文通过正演测试了相关数据处理流程,即利用有限差分正演了起伏地表模型的大偏移距地震单炮弹性波场特征,通过共检波点域面波信号F-K频谱叠加构建新方法,从深反射地震数据集中提取了高品质的多阶面波频散曲线,再利用多阶面波联合反演获得了近地表的结构特征.在前述正演流程基础上,利用跨越班公湖—怒江缝合带的SinoProbe深反射地震剖面中的实际炮集数据,求取了基阶和一阶瑞利波频散曲线,联合反演后得到近地表横波速度结构.该结果与初至波走时反演获取的纵波速度结构具有较好的一致性,且在近地表的浅层分辨率较纵波速度结构特征更高,而更与已有地质认识相吻合.本文提供的相关数据处理流程表明利用深反射地震炮集数据,也能够获取近地表浅层的横波速度结构.  相似文献   

12.
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.  相似文献   

13.
Simple equations guide high-frequency surface-wave investigation techniques   总被引:5,自引:0,他引:5  
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency–velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting—the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model.  相似文献   

14.
A Fast and Reliable Method for Surface Wave Tomography   总被引:6,自引:0,他引:6  
—?We describe a method to invert regional or global scale surface-wave group or phase-velocity measurements to estimate 2-D models of the distribution and strength of isotropic and azimuthally anisotropic velocity variations. Such maps have at least two purposes in monitoring the nuclear Comprehensive Test-Ban Treaty (CTBT): (1) They can be used as data to estimate the shear velocity of the crust and uppermost mantle and topography on internal interfaces which are important in event location, and (2) they can be used to estimate surface-wave travel-time correction surfaces to be used in phase-matched filters designed to extract low signal-to-noise surface-wave packets.¶The purpose of this paper is to describe one useful path through the large number of options available in an inversion of surface-wave data. Our method appears to provide robust and reliable dispersion maps on both global and regional scales. The technique we describe has a number of features that have motivated its development and commend its use: (1) It is developed in a spherical geometry; (2) the region of inference is defined by an arbitrary simple closed curve so that the method works equally well on local, regional, or global scales; (3) spatial smoothness and model amplitude constraints can be applied simultaneously; (4) the selection of model regularization and the smoothing parameters is highly flexible which allows for the assessment of the effect of variations in these parameters; (5) the method allows for the simultaneous estimation of spatial resolution and amplitude bias of the images; and (6) the method optionally allows for the estimation of azimuthal anisotropy.¶We present examples of the application of this technique to observed surface-wave group and phase velocities globally and regionally across Eurasia and Antarctica.  相似文献   

15.
The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread.  相似文献   

16.
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT.  相似文献   

17.
基于改进的散射积分算法的初至波走时层析   总被引:2,自引:2,他引:0       下载免费PDF全文
初至波走时层析是获取近地表速度结构的一种常用方法.随着采集技术的不断发展,可使用的数据量迅速增多,传统的基于射线追踪和解方程组的地震走时层析成像方法面临着内存占用大、方程求解不稳定等问题.为了解决这些问题,本文基于前人在波形反演研究中提出的一种改进的散射积分算法,提出了一种预条件最速下降法初至波走时层析.该方法无需存储核函数矩阵与Hessian矩阵即可方便地实现目标函数梯度的计算与预条件,且该方法计算效率高、求解稳定、易于并行.数值实验结果表明,该方法可以获得与传统方法精度相当的反演结果,但所占用的内存大幅减小.  相似文献   

18.
大地电磁自适应正则化反演算法   总被引:36,自引:11,他引:36       下载免费PDF全文
针对大地电磁正则化反演中正则化因子的选取困难问题提出了自适应正则化反演算法(Adaptive Regularized Inversion Algorithm, ARIA). 在该算法中, ①提出了一种新的数据方差处理方法:数据方差规范化,使得数据方差的大小只对数据的拟合发生影响,不对数据目标函数和模型约束目标函数的权重产生影响,从而减少了正则化因子取值的影响因素;②提出了粗糙度核矩阵的概念,并给出了由基本结构插值基函数计算粗糙度核矩阵的公式,使得模型目标函数的构建更为简便、直接;③根据数据目标函数、模型约束目标函数和正则化因子之间的关系,提出了两种正则化因子自适应调节方法. 本文详细阐述了最平缓模型约束下的大地电磁一维连续介质反演的ARIA实现,以几个算例的分析比较来说明ARIA的有效性.  相似文献   

19.
地球物理抗差估计和广义逆方法   总被引:15,自引:3,他引:12       下载免费PDF全文
为进行观测数据误差较大的地球物理资料的反演,引人抗差估计,称作地球物理抗差估计;为使病态方程组的反演解更可靠,又结合广义逆方法进行了算法改进.首先介绍抗差最小二乘(RLS)的基本原理,然后推寻出适于广义逆反演方法的改进算式,最后举例加以讨论.分析表明,抗差估计可以有效地抑制地球物理观测异常的影响,得出正常模式下的较好估计值;而用改进后的算式和广义逆反演可以使反演解更加改善,不仅如此,改进后的方法还能直接给出解估计的可靠性评价.  相似文献   

20.
Caveats in Multi-modal Inversion of Seismic Surface Wavefields   总被引:1,自引:0,他引:1  
We consider several examples demonstrating that the formal modal representation of surface wavefields often does not describe adequately observable wave parameters, such as the phase and group velocity dispersion of higher modes. The main reason for this is the existence in the medium of several waveguides or weakly coupled wavefields in the same waveguide. In such cases the separation of neighboring higher modes may be impossible, and observed dispersion curves may significantly differ from the ones predicted by the theory. From the example related to the studies of the crustal and upper mantle structure we found that the difficulty in the separation of first and second crustal higher modes can be overcome by applying a special inversion procedure. This procedure ignores the existence of a low velocity layer in the upper mantle when fitting the observable higher-mode dispersion curve to the one predicted by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号