首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing techniques for computing the gravitational field due to a homogeneous polyhedron all transform the required volume integral, expressing the field due to a volume distribution of mass, into a surface integral, expressing the potential due to a surface mass distribution over the boundary of the source body. An alternative representation is also possible and results in a surface integral expressing the potential due to a variable-strength double layer located on the polyhedral source boundary. Manipulation of this integral ultimately allows the gravitational field component in an arbitrary direction to be expressed as a weighted sum of the potentials due to two basic source distributions. These are a uniform-strength double layer located on all faces and a uniform-strength line source located along all edges. The derivatives of the gravitational field components can also be expressed in a similar form as can the magnetic field components due to a homogeneous magnetic polyhedron. It follows that the present approach can be used to generate a universal program capable of modelling all the commonly used potential field responses due to 3D bodies of arbitrary shape.  相似文献   

2.
In this paper a very general rainfall-runoff model structure (described below) is shown to reduce to a unit hydrograph model structure. For the general model, a multi-linear unit hydrograph approach is used to develop subarea runoff, and is coupled to a multi-linear channel flow routing method to develop a link-node rainfall-runoff model network. The spatial and temporal rainfall distribution over the catchment is probabilistically related to a known rainfall data source located in the catchment in order to account for the stochastic nature of rainfall with respect to the rain gauge measured data. The resulting link node model structure is a series of stochastic integral equations, one equation for each subarea. A cumulative stochastic integral equation is developed as a sum of the above series, and includes the complete spatial and temporal variabilities of the rainfall over the catchment. The resulting stochastic integral equation is seen to be an extension of the well-known single area unit hydrograph method, except that the model output of a runoff hydrograph is a distribution of outcomes (or realizations) when applied to problems involving prediction of storm runoff; that is, the model output is a set of probable runoff hydrographs, each outcome being the results of calibration to a known storm event.  相似文献   

3.
The desired result of an optimum seismic data processing sequence, is a broad band zerophase section, i.e. a bandpassed version of the actual reflectivity function. However, a lot of socalled zerophase-sections still carry a significant phase-error, which is due to unrealistic assumptions in the processing stream in terms of the design of standard processes as for example deconvolution. The two major issues here are the color of the reflectivity series and the misuse of prewhitening. If not properly handled they lead to a phase- and amplitude spectrum bias in the final section, preventing it from being zerophase. Whereas the reflectivity bias leads to a phase error of 50 to 90 deg, the prewhitening bias results in a phase error, which is directly proportional to the logarithm of the actual prewhitening factor.Therefore, if the spike deconvolution process is applied in a time-variant manner, as a consequence a time-variant and usually frequency dependent phase error is introduced! In this article we have made an effort to include sufficient detail to facilitate a clear understanding of the problems involved.The standard processing flow should have a minimum-delay transform and spike deconvolution prestack, followed by a zerophase transform poststack, where the residual wavelet is assumed to be minimum phase.  相似文献   

4.
We present a short review of seismological data and show that a difference of upper mantle structure is clearly resolved between old and young continental plates. An Archean plate is approximately 1 second faster than a Paleozoic plate for P waves. Such a change in plate structure implies that the density of an Archean lithosphere should be greater than the density of a Paleozoic lithosphere, if they have the same chemical composition. Applying isostasy, we would expect a Precambrian plate to sink and its surface to stand at a level 8 km beneath that of a Paleozoic plate. We first check that the weight of a crustal column is not smaller for a Precambrian crust than for a Paleozoic crust. Explosion seismology data show that isostatic equilibrium is nearly achieved in the crust. Therefore a compensating mechanism has to be acting in the subcrustal lithosphere. Two hypotheses are presented. Provided that the chemical composition of the lower lithosphere does not vary with time, a simple condition for a continental plate not to sink when aging, would be that the density of the lower lithosphere be ?0.1 g/cm3 smaller than the density of the asthenosphere. Another condition that would prevent plates to sink would be a lowering of the density of the lower lithosphere with age due for example to a variation of its chemical composition and to a reduction in the mean atomic weight. Both hypotheses imply that isostatic equilibrium of old continental plates is maintained by a geochemical mechanism. Although thermal evolution is a key factor for explaining the evolution of continents, it has to be complemented by a hypothesis on the change of the chemistry of the lower continental lithosphere with respect to the asthenosphere and/or with respect to age.  相似文献   

5.
6.
Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step to a complete step-by-step integration procedure. It is analytically proven that ensuring stability conditions in each time step leads to a stable computation of the entire step-by-step integration procedure. The other extension shows that the nonlinear error propagation results, which are derived for a nonlinear single degree of freedom (SDOF) system, can be applied to a nonlinear multiple degree of freedom (MDOF) system. This application is dependent upon the determination of the natural frequencies of the system in each time step, since all the numerical properties and error propagation properties in the time step are closely related to these frequencies. The results are derived from the step degree of nonlinearity. An instantaneous degree of nonlinearity is introduced to replace the step degree of nonlinearity and is shown to be easier to use in practice. The extensions can be also applied to the results derived from a SDOF system based on the instantaneous degree of nonlinearity, and hence a time step might be appropriately chosen to perform a pseudodynamic test prior to testing.  相似文献   

7.
Ground water systems can be categorized with respect to quantity into two groups: (1) those that will ultimately reach a new equilibrium state where pumping can be continued indefinitely and (2) those in which the stress is so large that a new equilibrium is impossible; hence, the system has a finite life. Large ground water systems, where a new equilibrium can be reached and in which the pumping is a long distance from boundaries where capture can occur, take long times to reach a new equilibrium. Some systems are so large that the new equilibrium will take a millennium or more to reach a new steady-state condition. These large systems pose a challenge to the water manager, especially when the water manager is committed to attempting to reach a new equilibrium state in which water levels will stabilize and the system can be maintained indefinitely.  相似文献   

8.
Comparative study of methods for WHPA delineation   总被引:3,自引:0,他引:3  
Human activities, whether agricultural, industrial, commercial, or domestic, can contribute to ground water quality deterioration. In order to protect the ground water exploited by a production well, it is essential to develop a good knowledge of the flow system and to adequately delineate the area surrounding the well within which potential contamination sources should be managed. Many methods have been developed to delineate such a wellhead protection area (WHPA). The integration of more information on the geologic and hydrogeologic characteristics of the study area increases the precision of any given WHPA delineation method. From a practical point of view, the WHPA delineation methods allowing the simplest and least expensive integration of the available information should be favored. This paper presents a comparative study in which nine different WHPA delineation methods were applied to a well and a spring in an unconfined granular aquifer and to a well in a confined highly fractured rock aquifer. These methods range from simple approaches to complex computer models. Hydrogeological mapping and numerical modeling with MODFLOW-MODPATH were used as reference methods to respectively compare the delineation of the zone of contribution and the zone of travel obtained from the various WHPA methods. Although applied to simple ground water flow systems, these methods provided a relatively wide range of results. To allow a realistic delineation of the WHPA in aquifers of variable geometry, a WHPA delineation method should ensure a water balance and include observed or calculated regional flow characteristics.  相似文献   

9.
位场数据曲化平是位场数据处理解释中的重要运算,但是它的计算量和计算的复杂性影响了它在许多处理和解释方法技术中的应用.本文提出一种位场数据曲化平的迭代方法,即通过把位场数据曲化平视为平面位场数据向上延拓的反问题,得到曲化平的线性积分方程,再把曲面上位场数据视为曲面平均高程面上的位场数据,利用向下延拓的波数域广义逆算法把平均高程面上的位场数据向下延拓到设定平面上,再根据曲面和其平均高程面的相对起伏对设定平面上的向下延拓数据进行起伏校正,最后再把所得平面上的位场数据向上延拓得到曲面上的位场数据,并进行迭代.把这种方法用于三维理论模型数据和实际磁场数据的曲化平处理均获得了理想的结果.  相似文献   

10.
A modal decomposition method for computing the solution to an eddy-current problem is presented. Modes are computed using the finite element method and the modes produced are simplified to a magnetic polarizability dyadic in the form of a singularity expansion. This reduced form is a very compact and easily-implemented model for the scatterer's reaction to an arbitrary magnetic field. Due to scaling properties, a single model can be applied to scatterers with different sizes and conductivities. The modal decomposition method could be used to compute a variety of parameterized simple models for canonical shapes to assist in algorithm design for clutter discrimination in buried object detection systems. The method is verified using analytically known formulas for the dyadic of a sphere and a loop. The code is then used to predict the behavior of cylinders with arbitrary conductivity and size, showing excellent agreement with a set of measured cylinders.  相似文献   

11.
The problem of a smooth field configuration, which should be an initial configuration in modeling (using the method of coarse particles) the problem of a stationary solar wind flow around a magnetic cloud in the case of a spatially two-dimensional statement (when a magnetic cloud is considered as a force-free magnetic cylinder with a finite radius) is considered. It has been indicated that such a statement is possible only when the magnetic field in the solar wind is parallel to the cylinder axis. The method for finding the magnetic field of a force-free cylinder with a finite radius, when some field component is specified and another component is determined based on this one (which makes it possible to construct fields with preassigned properties), has been proposed. The variant for constructing the initial field configuration in the transition region around a cylinder has been proposed. This variant makes it possible to gradually pass from homogeneous crossed fields in the solar wind to a force-free magnetic and zero electric fields within a cylinder, an electric field being potential and orthogonal to a magnetic field (in the reference system related to a magnetic cloud).  相似文献   

12.
This article describes a simplified method to calculate a building-specific subslab to indoor air attenuation factor using data collected during pressure-field extension testing similar to industry standards for radon mitigation. It also describes a simplified method to calculate the radius of influence for a conventional suction point using a mass flux-balance model. The analysis is based on three simple measurements: (1) the extraction flow rate, (2) cross-slab applied vacuum at a radial distance of 3 feet, and (3) cross-slab applied vacuum at a radial distance of 10 feet. The intent is to provide a practitioner with a rapid and useful screening-level assessment of whether the benefits of reduced mitigation system costs warrant an investment in a more detailed mathematical analysis of the flow and vacuum data. In addition, this may also help a practitioner to make real-time decisions regarding placement of communication test points during pressure-field extension testing.  相似文献   

13.
In this paper a very general rainfall-runoff model structure (described below) is shown to reduce to a unit hydrograph model structure. For the general model, a multi-linear unit hydrograph approach is used to develop subarea runoff, and is coupled to a multi-linear channel flow routing method to develop a link-node rainfall-runoff model network. The spatial and temporal rainfall distribution over the catchment is probabilistically related to a known rainfall data source located in the catchment in order to account for the stochastic nature of rainfall with respect to the rain gauge measured data. The resulting link node model structure is a series of stochastic integral equations, one equation for each subarea. A cumulative stochastic integral equation is developed as a sum of the above series, and includes the complete spatial and temporal variabilities of the rainfall over the catchment. The resulting stochastic integral equation is seen to be an extension of the well-known single area unit hydrograph method, except that the model output of a runoff hydrograph is a distribution of outcomes (or realizations) when applied to problems involving prediction of storm runoff; that is, the model output is a set of probable runoff hydrographs, each outcome being the results of calibration to a known storm event.  相似文献   

14.
The International Seismological Centre (ISC) publishes the definitive global bulletin of earthquake locations. In the ISC bulletin, we aim to obtain a free depth, but often this is not possible. Subsequently, the first option is to obtain a depth derived from depth phases. If depth phases are not available, we then use the reported depth from a reputable local agency. Finally, as a last resort, we set a default depth.In the past, common depths of 10, 33, or multiples of 50 km have been assigned. Assigning a more meaningful default depth, specific to a seismic region will increase the consistency of earthquake locations within the ISC bulletin and allow the ISC to publish better positions and magnitude estimates. It will also improve the association of reported secondary arrivals to corresponding seismic events.We aim to produce a global set of default depths, based on a typical depth for each area, from well-constrained events in the ISC bulletin or where depth could be constrained using a consistent set of depth phase arrivals provided by a number of different reporters.In certain areas, we must resort to using other assumptions. For these cases, we use a global crustal model (Crust2.0) to set default depths to half the thickness of the crust.  相似文献   

15.
Sensitivity of seismic waves to structure   总被引:2,自引:0,他引:2  
We study how the perturbations of a generally heterogeneous isotropic or anisotropic structure manifest themselves in the wavefield, and which perturbations can be detected within a limited aperture and a limited frequency band. A short-duration broad-band incident wavefield with a smooth frequency spectrum is considered. In-finitesimally small perturbations of elastic moduli and density are decomposed into Gabor functions. The wavefield scattered by the perturbations is then composed of waves scattered by the individual Gabor functions. The scattered waves are estimated using the first-order Born approximation with the paraxial ray approximation. For each incident wave, each Gabor function generates at most 5 scattered waves, propagating in specific directions and having specific polarisations. A Gabor function corresponding to a low wavenumber may generate a single broad-band unconverted wave scattered in forward or narrow-angle directions. A Gabor function corresponding to a high wavenumber usually generates 0 to 5 narrow-band Gaussian packets scattered in wide angles, but may also occasionally generate a narrow-band P to S or S to P converted Gaussian packet scattered in a forward direction, or a broad-band S to P (and even S to S in a strongly anisotropic background) converted wave scattered in wide angles. In this paper, we concentrate on the Gaussian packets caused by narrow-band scattering. For a particular source, each Gaussian packet scattered by a Gabor function at a given spatial location is sensitive to just a single linear combination of 22 values of the elastic moduli and density corresponding to the Gabor function. This information about the Gabor function is lost if the scattered wave does not fall into the aperture covered by the receivers and into the legible frequency band.  相似文献   

16.
Models under location uncertainty are derived assuming that a component of the velocity is uncorrelated in time. The material derivative is accordingly modified to include an advection correction, inhomogeneous and anisotropic diffusion terms and a multiplicative noise contribution. This change can be consistently applied to all fluid dynamics evolution laws. This paper continues to explore benefits of this framework and consequences of specific scaling assumptions. Starting from a Boussinesq model under location uncertainty, a model is developed to describe a mesoscale flow subject to a strong underlying submesoscale activity. Specifically, turbulent diffusion and rotation effects have similar orders of magnitude. As obtained, the geostrophic balance is modified and the Quasi-Geostrophic assumptions remarkably lead to a zero Potential Vorticity. The ensuing Surface Quasi-Geostrophic model provides a simple diagnosis of warm frontolysis and cold frontogenesis.  相似文献   

17.
The frequency-independent foundation impedances, commonly used in soil-structure dynamic interaction problems, are developed for a circular footing resting on a homogeneous halfspace. As they ignore the structure attached to the foundation, the error introduced in the structural response may be 50 per cent or more in the neighbourhood of the fundamental frequency of the soil-structure system. The present study proposes a new method developed for most dynamic soil-structure interaction problems. The key idea is to retain for the frequency-independent impedances values computed for the fundamental frequency of the soil-structure system; thus these values include the dynamic characteristics of the whole soil-structure system and lead to a satisfactory approximation of the exact solution over a wide frequency range. The method is developed here for the horizontal and rocking modes of a structure with a circular base resting on a homogeneous halfspace. Numerical applications are given for a simple linear oscillator in order to make possible a thorough parametric study. The response of some idealized building-foundation systems to harmonic excitation or to a seismic input is next examined in order to illustrate the efficiency of the proposed model.  相似文献   

18.
Within this paper we present a simplified analytical model to provide insight into the key performance measures of a generic disposal system for high level waste within a geological disposal facility. The model assumes a low solubility waste matrix within a corrosion resistant disposal container surrounded by a low permeability buffer. Radionuclides migrate from the disposal area through a porous geosphere to the biosphere and give a radiological dose to a receptor. The system of equations describing the migration is transformed into Laplace space and an approximation used to determine peak values for the radionuclide mass transfer rate entering the biosphere. Results from the model are compared with those from more detailed numerical models for key radionuclides in the UK high level waste inventory. Such an insight model can provide a valuable second line of argument to assist in confirming the results of more detailed models and build confidence in the safety case for a geological disposal facility.  相似文献   

19.
The design storm approach, where the subject criterion variable is evaluated by using a synthetic storm pattern composed of identical return frequencies of storm pattern input, is shown to be an effective approximation to a considerably more complex probabilistic model. The single area unit hydrograph technique is shown to be an accurate mathematical model of a highly discretized catchment with linear routing for channel flow approximation, and effective rainfalls in subareas which are linear with respect to effective rainfall output for a selected “loss” function. The use of a simple “loss” function which directly equates to the distribution of rainfall depth-duration statistics (such as a constant fraction of rainfall, or a ?-index model) is shown to allow the pooling of data and thereby provide a higher level of statistical significance (in estimating T-year outputs for a hydrologic criterion variable) than use of an arbitrary “loss” function. The above design storm unit hydrograph approach is shown to provide the T-year estimate of a criterion variable when using rainfall data to estimate runoff.  相似文献   

20.
It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load. The dynamic amplification factor (DAF), which is defined as the ratio of the amplitude of the vibratory response to the static response, is normally used to depict the dynamic effect. For a single-degree-of-freedom system (SDOF) subjected to a sudden dynamic load, the maximum value of DAF is 2. Many design guidelines therefore use 2 as an upper bound to consider the dynamic effect. For a civil engineering structure, which is normally a multiple-degrees-of-freedom (MDOF) system, the DAF may exceed 2 in certain circumstances. The adoption of 2 as the upper bond as suggested by the design guidelines therefore may lead to unsafe structural design. Very limited studies systematically investigate the DAF of a MDOF system. This study theoretically investigates the DAF of a MDOF system when it is subjected to a step load based on the fundamental theory of structural dynamics. The condition on which the DAF may exceed 2 is defined. Two numerical examples and one experimental study of a cable-stayed bridge subjected to sudden cable loss are presented to illustrate the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号