首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Flow in many bedrock aquifers is through fracture networks. Point to point tracer tests using applied tracers provide a direct measure of time of travel and are most useful for determining effective porosity. Calculated values from these tests are typically between 10−4 and 10−2 (0.01% to 1%), with these low values indicating preferential flow through fracture and channel networks. Tracer tests are not commonly used in site investigations, and specific yield is often used as a proxy for effective porosity. The most popular methods have used centrifuge measurements, water table fluctuations, pumping tests, and packer tests. Specific yield varies substantially with the testing method. No method is as reliable as tracer testing for providing estimates of effective porosity, but all methods provide complementary insights on aquifer structure. Temporal and spatial scaling effects suggest that bedrock aquifers have hierarchical structures, with a network of more permeable fractures and channels, which are connected to less permeable fractures and to the matrix. Consequences of the low effective porosities include groundwater velocities that often exceed 100 m/d and more frequent microbial contamination than in aquifers in unconsolidated sediments. The large uncertainty over the magnitude of effective porosity in bedrock aquifers makes it an important parameter to determine in studies where time of travel is of interest.  相似文献   

2.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   

3.
The goal of the presented research was the derivation of flood hazard maps, using Monte Carlo simulation of flood propagation at an urban site in the UK, specifically an urban area of the city of Glasgow. A hydrodynamic model describing the propagation of flood waves, based on the De Saint Venant equations in two‐dimensional form capable of accounting for the topographic complexity of the area (preferential outflow paths, buildings, manholes, etc.) and for the characteristics of prevailing imperviousness typical of the urban areas, has been used to derive the hydrodynamic characteristics of flood events (i.e. water depths and flow velocities). The knowledge of the water depth distribution and of the current velocities derived from the propagation model along with the knowledge of the topographic characteristics of the urban area from digital map data allowed for the production of hazard maps based on properly defined hazard indexes. These indexes are evaluated in a probabilistic framework to overcome the classical problem of single deterministic prediction of flood extent for the design event and to introduce the concept of the likelihood of flooding at a given point as the sum of data uncertainty, model structural error and parameterization uncertainty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The colloidal borescope consists of a set of lenses and miniature video cameras capable of observing natural particles in monitoring wells. Based on field observations of these particles, it appears possible to measure in situ groundwater velocity in a well bore. Field observations have shown that directional measurements using the colloidal borescope are generally in good agreement with expected flow directions. However, the magnitude of flow velocity is higher compared with values based on conventional test methods. High relative flow velocities, even after correction factors have been applied to compensate for well bore effects, are believed to be due to preferential flow zones in the surrounding aquifer. Low flow zones exhibit swirling multidirectional flow that does not allow for a linear velocity measurement. Consequently, groundwater flow velocities measured by the colloidal borescope in heterogeneous aquifers will be biased toward the maximum velocity values present in the aquifer. A series of laboratory experiments was conducted to assess the reliability of the instrument. Based on this work, a seepage velocity correction factor ( ) of 1–4 was found for quantifying groundwater seepage velocity in the adjacent aquifer from observations in a well bore. Laboratory measurements also indicate that preferential flow in the surrounding aquifer dominates flow in the well. Results of this work suggest the possibility of quantifying higher-flow velocities associated with preferential flow zones in the subsurface.  相似文献   

5.
Deep basin aquifers are increasingly used in water‐stressed areas, though their potential for sustainable development is inhibited by overlying aquitards and limited recharge rates. Long open interval wells (LOIWs)—wells uncased through multiple hydrostratigraphic units—are present in many confined aquifer systems and can be an important mechanism for deep basin aquifers to receive flow across aquitards. LOIWs are a major control on flow in the deep Cambrian–Ordovician sandstone aquifers of the upper Midwest, USA, providing a source of artificial leakage from shallow bedrock aquifers and equilibrating head within the sandstone aquifers despite differential pumpage. Conceptualizing and quantifying this anthropogenic flow has long been a challenge for groundwater flow modellers, particularly on a regional scale. Synoptic measurements of active production wells and well completion data for northeast Illinois form the basis for a transient, head‐specified MODFLOW model that determines mass balance contributions to the region and estimates LOIW leakage to the aquifers. Using this insight, transient LOIW leakage was simulated using transiently changing KV zones in a traditional, Q‐specified MODFLOW‐USG model, a novel approach that allows the KV in a cell containing a LOIW to change transiently by use of the time‐variant materials (TVM) package. With this modification, we achieved a consistent calibration through time, averaging 19.9 m root mean squared error. This model indicates that artificial leakage via LOIWs contributed a minimum of 10–13% of total flow to the sandstone aquifers through the entire history of pumping, up to 50% of flow around 1930. Removal from storage exceeds 40% of flow during peak withdrawals, much of this flow sourced from units other than the primary sandstone aquifers via LOIWs. As such, understanding the timing and magnitude of LOIW leakage is essential for predicting future water availability in deep basin aquifers.  相似文献   

6.
An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil–bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling‐head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re‐equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling‐head permeability test. These observations demonstrate that a properly designed falling‐head permeability test may be useful in the detection of defective casing seals.  相似文献   

7.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

8.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
River basins in south‐western USA are some of the most extensively studied arid land fluvial systems in the world. Since the early 1960s their hydro‐climatic histories have been reconstructed from the analysis of alluvial cut‐and‐fill cycles, while from the late 1970s there have been investigations of slackwater deposits and palaeostage indicators for large floods in stable‐boundary bedrock reaches. However, no studies have regionally integrated Holocene fluvial histories from these two different types of fluvial environments. The current study combines the alluvial archive with flood records from bedrock reaches to generate a probability‐based 12,000 year record of flooding in south‐western USA. Using more than 700 14C‐dated fluvial units, the analysis produces a high resolution (centennial) flood record. Seven episodes of increased flooding occurred at 11,250–10,400, 8800–8350, 8230–7600, 6700–5700, 5600–4820, 4550–3320 and 2000–0 cal. BP. Bedrock reaches are found to record more frequent floods during the middle to late Holocene, while in alluvial rivers more flood units are dated to the early and middle Holocene. These differences are primarily the result of selective preservation with alluvial reaches tending to erode during periods characterised by very large floods. Episodes of major Holocene flooding recorded in slackwater deposits within bedrock systems correspond with periods of increased precipitation in the region and lower temperatures. In contrast, within alluvial rivers above‐average flooding probabilities, as well as regionally extensive channel entrenchment episodes, match with reduced annual precipitation and lower temperatures. The results of this study clearly demonstrate the value of the Holocene fluvial archive for reconstructing regional, short‐term hydro‐climatic change in south‐western USA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Clastic sedimentary rocks are generally considered non‐karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst‐like characteristics, flow behavior, and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi‐tracer tests with fluorescent dyes and bacteria‐sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (1) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (2) microbial contaminants are rapidly transported toward springs; and (3) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different groundwater protection strategies that currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability.  相似文献   

12.
An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two‐dimensional fracture planes, oriented near‐horizontally at one site, and near‐vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport.  相似文献   

13.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

14.
Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self‐organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point‐located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large‐magnitude springs, and frequent microbial contamination of wells all support the model of self‐organized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.  相似文献   

15.
16.
A better understanding of bedrock incision mechanisms and processes is essential to the study of long‐term landscape evolution. Yet, little is known about flow dynamics in bedrock rivers, limiting our ability to make realistic predictions of local bedrock incision rates. A recent investigation of flow through bedrock canyons of the Fraser River revealed that plunging flows, defined by the downward‐directed movement of near surface flow toward the channel bed, occur in channels that have low width‐to‐depth ratios. Plunging flows occur into deep scour pools, which are often coincident with lateral constrictions and channel spanning submerged ridges (sills). A phenomenological investigation was undertaken to reproduce the flow fields observed in the Fraser canyons and to explore morphological controls on the occurrence and relative strength of plunging flow in bedrock canyons. Our observations show that the plunging flow structure can be produced along a scour pool entrance slope by accelerating the flow at the canyon entrance either over submerged sills or through lateral constrictions. Plunging flow appears to be a function of convective deceleration into a scour pool which can be enhanced by sill height, the amount of the channel width that is constricted, pool entrance slope, discharge, and a reduction in channel width‐to‐depth ratio. Plunging flow greatly enhances the potential for incision to occur along the channel bed and is an extreme departure from the assumptions of steady, uniform flow in bedrock incision models, highlighting the need for improved formulations that account for fluid flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Following Hemker and Maas (1987) the models of two or three leaky aquifers are applied to simulate the flow to vertical wells operating in the fractured or dual porosity aquifers. The software WellTest (WT) (Székely 2015) is used for calculating the drawdown and discharge rate variation. The comparative analysis with the independent analytical solutions by Boulton and Streltsova-Adams (1978), Warren and Root (1963), Kazemi et al. (1969) concluded with acceptable agreement between the WT simulation and the alternate calculation methods. The selected field tests have been conducted in fractured limestone aquifers. The pumping test west of Copenhagen shows an example of fractured aquifer with considerable negative skin effect at the well face. The flowing well Wafra W1 in Kuwait operates in the two-zone aquifer exhibiting sufficient vertical recharge via leakage beyond a circular domain of estimated radius of 2460 m.  相似文献   

18.
Five years of hydrogeological monitoring and field activities performed in the complex hydrogeological system of the Acque Albule basin (AAB) were conducted to define the hydrogeological setting, the relationship between deep and shallow aquifers and a conceptual groundwater flow model of this exploited area using conventional quantitative techniques. The basin, which is located close to Rome (Italy) on the west side of the Apennine chain and just north of the Colli Albani volcano, subsided after development of a north–south fault system (about 115 000 y bp). The AAB experiences intense hydrothermal activity, which has produced a large travertine deposit (80‐m thick). The travertine deposit constitutes a fractured aquifer that is the final destination of more than 5 m3 s‐1 of water and is strongly dewatered by quarry activities. The complex hydrogeology of this basin was investigated, revealing two main hydraulically connected aquifers, one thermalised and partly confined into the limestone bedrock and one unconfined in the travertine. The two aquifers are separated by a non‐continuous clayey aquiclude. The hydrogeological survey and geological characterisation contributed to the development of the groundwater flow conceptual model. Analysis and comparison of the monitored levels highlighted the pattern of flow between the deep and shallow parts of the flow system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the influences of palaeohydrology and geological‐topographic inheritance in shaping the channel of the lower River Suir, southeast Ireland. Results of acoustic surveys of the lower River Suir and Waterford Harbour reveal two scales of pseudo‐cyclic river bedforms. Longitudinal elevation profiles of the geological topography (undulating bedrock and till‐mantled bedrock) bounding the present floodplain swath reveal pseudo‐cyclicity in that terrain too. Spectral and statistical analyses are used to quantify the cyclicity of the long profile and geological‐topographic series. These methods show that the dominant cyclicity of the long profile reflects autocorrelation more than inheritance of cyclicity from the bounding geological topography. The cyclicity of the long profile mainly reflects a hydraulic control on pool‐spacing, although some cyclicity probably has been inherited from the geological‐topography. Channel‐forming palaeodischarge is estimated based on the dominant pool‐spacing revealed by spectral analysis, validated using relationships between meander wavelength, channel cross‐sectional geometry and hydraulically‐informed discharge reconstruction. The palaeodischarge estimates are in close agreement and are two orders of magnitude greater than present flood maxima. Significantly, these palaeodischarge estimates also agree closely with palaeodischarge calculated for the submerged Pleistocene palaeochannel that extends across the near‐shore continental shelf from Waterford Harbour. The pool‐sequence of the lower Suir and the submerged palaeochannel represent a former land‐system that was active during a period of low relative sea level during the last glacial. More broadly, the paper offers insights into the landscape evolution of formerly glaciated regions that experienced very wide discharge variability during and after the transition from glacial to interglacial regimes, in a context of complex relative sea level change. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号