首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
提出了一种综合考虑地震环境和场地影响的钢筋混凝土房屋地震易损性分析方法. 将地震环境、局部场地和工程结构作为一个整体,以概率地震危险性分析的方式考虑地震环境的影响,在此基础上详细考虑了随局部场地而变化的反应谱形状对结构地震反应及其破坏概率分布的影响. 此外,还提出了另一种表述结构易损性的方式,以对应于不同超越概率地震危险水平的方式, 提供结构地震破坏概率分布的信息.   相似文献   

3.
Introduction The estimation of damage probability distribution among different damage states of rein-forced concrete buildings is a key component of earthquake loss estimation for modern city or a group of cities. With the development of city, the reinforced concrete buildings are major compo-nent parts of modern cities. Vulnerability estimates for these kinds of buildings are of importance to those responsible for civil protection, relief, and emergency services to enable adequate contin-genc…  相似文献   

4.
Structural irregularity in new buildings is sometimes desired for aesthetic reasons. Often it is unavoidable due to different uses in adjacent spaces within the building. The seismic behaviour of irregular structures is harder to predict than that of regular buildings. More comprehensive analysis techniques are often required to achieve adequate accuracy. Designing irregular structures poses additional challenges as the structural characteristics are unknown. There is a lack of practical design methods that reliably produce economic and seismically robust design solutions for highly irregular RC structures. This paper presents an extension of the Effective Modal Design (EMD) method from asymmetric-plan RC wall buildings to vertically setback asymmetric-plan RC wall buildings. EMD is a generalization of the Direct Displacement-Based Design method for highly irregular ductile uncoupled RC wall structures. EMD reverse engineers a multi-degree of freedom Equivalent Linear System to produce the most economic design solution that achieves the target performance levels. The utility of EMD is verified for a wide range of setback asymmetric-plan reinforced concrete wall structures using nonlinear time history analysis of reasonably realistic 3D structural models. Advantages of EMD include explicit consideration of nonlinear, torsional and ‘higher mode’ effects. The method produces capacity-designed design actions for all reinforced concrete walls in the seismic structural system. EMD only requires three response spectrum type analyses. It does not require time history analysis or pushover analysis. EMD is a practical seismic design method for generally irregular RC wall buildings that uses analysis techniques that most engineering practitioners are familiar and confident with. It was found that for over 95% of the structures considered, EMD achieved critical mean peak responses between ??20 and +?15% of the target response values, with a median of ??5%. This significant improvement in design accuracy and reliability (compared to traditional force based design) was achieved at the relatively small additional computational effort of two Response Spectrum Analyses. This demonstrates the value that the proposed Effective Modal Design method adds to the current spectrum of seismic design methods for irregular ductile RC wall structures.  相似文献   

5.
根据我国现行抗震设计规范、混凝土结构设计规范以及目前既有建筑结构抗震能力研究成果,借鉴强度与延性评估理论,探讨了一种适合我国工程实际的既有含剪力墙钢筋混凝土结构的抗震能力评估方法。应用自行编制的评估程序EAC-RCSW应用于一工程实例,表明该方法可定量评估含剪力墙钢筋混凝土结构的抗震能力。  相似文献   

6.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

7.
The seismic evaluation of existing buildings is a more difficult task than the seismic design of new buildings. Non-linear methods are needed if realistic results are to be obtained. However, the application to real complex structures of various evaluation procedures, which have usually been tested on highly idealized structural models, is by no means straightforward. In the paper, a practice-oriented procedure for the seismic evaluation of building structures, based on the N2 method, is presented, together with the application of this method to an existing multi-storey reinforced concrete building. This building, which is asymmetric in plan and irregular in elevation, consists of structural walls and frames. It was designed in 1962 for gravity loads and a minimum horizontal loading (2% of the total weight). The main results presented in terms of the global and local seismic demands are compared with the results of non-linear dynamic response-history analyses. As expected, the structure would fail if subjected to the design seismic action according to Eurocode 8. The shear capacity of the structural walls is the most critical. If the shear capacity of these elements was adequate, the structure would be able to survive the design ground motion according to Eurocode 8, in spite of the very low level of design horizontal forces. The applied approach proved to be a feasible tool for the seismic evaluation of complex structures. However, due to the large randomness and uncertainty which are involved in the determination of both the seismic demand and the seismic capacity, only rough estimates of the seismic behaviour of such structures can be obtained.  相似文献   

8.
Seismic safety of low ductility structures used in Spain   总被引:1,自引:0,他引:1  
The most important aspects of the design, seismic damage evaluation and safety assessment of structures with low ductility like waffle slabs buildings or flat beams framed buildings are examined in this work. These reinforced concrete structural typologies are the most used in Spain for new buildings but many seismic codes do not recommend them in seismic areas. Their expected seismic performance and safety are evaluated herein by means of incremental non linear structural analysis (pushover analysis) and incremental dynamic analysis which provides capacity curves allowing evaluating their seismic behavior. The seismic hazard is described by means of the reduced 5% damped elastic response spectrum of the Spanish seismic design code. The most important results of the study are the fragility curves calculated for the mentioned building types, which allow obtaining the probability of different damage states of the structures as well as damage probability matrices. The results, which show high vulnerability of the studied low ductility building classes, are compared with those corresponding to ductile framed structures.  相似文献   

9.
Recent earthquakes, that stroked Italian regions in past decades (Umbria— Marche 1997; Molise 2002; L’Aquila 2009), pointed out the high vulnerability of reinforced concrete existing buildings causing severe damages in the structures and consequently life losses. This is mainly due to the fact that such structures were often built without reference to seismic actions or on the basis of old standard provisions. Nowadays in Italy, Public Authorities are requested to evaluate the seismic vulnerability of their building stock assessing the actual capacity of such structures, as a consequence of new hazard levels and seismic microzonation introduced by new standards. According to Eurocode 8 or Italian standard NTC 2008, the seismic analysis of existing reinforced concrete buildings can be performed by one of the established procedure (i.e. Linear Static Analysis LSA, Linear Dynamic Analysis LDA, Nonlinear Static Analysis NSA, Nonlinear Dynamic Analysis NDA), depending on the achieved knowledge level about the structural system and materials. In order to compare efficiency and differences of previously described approaches, a deep investigation was executed on a reinforced concrete existing building whose dynamic behaviour was evaluated by an experimental dynamic analysis. In such a way, updated models were obtained and adopted for seismic analysis performed by using linear and nonlinear approaches, taking into account the stiffness and strength contribution of masonry infill walls. It was so possible to get useful indications on the reliability and discrepancies of different modelling approaches as well as on the influence of masonry infills on the seismic response of existing r.c. buildings.  相似文献   

10.
强震环境下带钢避难建筑抗震模型设计   总被引:4,自引:4,他引:0       下载免费PDF全文
避难建筑通常采用置换混凝土方法抗震,建筑对高强度地震的抗震性能差。因此提出高强度地震下带钢避难建筑抗震设计方法,采用复杂网络带钢避难建筑加固模型对加固前建筑的混泥土强度与荷载能力进行计算,增大框架柱截面,提升带钢避难建筑荷载。采用复合墙体受力加固模型提升建筑墙体抗震性。对加固后建筑模型的坍塌风险评估时,采用带钢避难建筑坍塌的全概率衡量加固后建筑在设计使用年限内的抗坍塌安全性。设计使用年限内加固后的带钢避难建筑的强震CRC超出概率是P(IMCRC),确保其在高强度地震下具有较高的抗震性能。实验结果说明,所提方法下的带钢避难建筑在遇到强震情况时具有较高的抗震性能。  相似文献   

11.
在北京城区的一栋钢筋混凝土建筑(Reinforced Concrete building,简称RC)中,进行历时两天的地脉动和地铁振动观测.介绍了利用地脉动和地铁振动信号研究RC建筑结构响应的观测方法、仪器设备、数据采集和数据处理方法.对观测数据进行两种分析:(1)对连续的地脉动背景噪声,采用H/V谱比法;(2)对经过...  相似文献   

12.
One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.  相似文献   

13.
14.
Effect of higher vibration modes on the seismic shear demand of reinforced concrete cantilever walls has been studied since the 1970’s. The shear amplification becomes more important with increasing fundamental period (tall buildings) and increasing ductility demand (R or q factors). Yet, studying the relevant recommendations of structural engineering researchers and provisions of various seismic codes reveals that there is no consensus regarding the extent of shear amplification and of the inter-wall distribution of shear demand in structural systems comprising walls of different lengths. The paper presents the available formulas for predicting shear amplification in ductile walls and dual systems (wall-frames). One effect that impacts the shear amplification is shear cracking mainly in the plastic hinge zone of the wall near the base leading to appreciably lower shear amplification than previously predicted. Post yield shear redistribution among interconnected unequal walls is also addressed. Finally, an extensive bibliography is provided.  相似文献   

15.
Conceptual aspects related to seismic vulnerability, damage and risk evaluation are discussed first, together with a short review of the most widely used possibilities for seismic evaluation of structures. The capacity spectrum method and the way of obtaining seismic damage scenarios for urban areas starting from capacity and fragility curves are then discussed. The determination of capacity curves for buildings using non-linear structural analysis tools is then explained, together with a simplified expeditious procedure allowing the development of fragility curves. The seismic risk of the buildings of Barcelona, Spain, is analyzed in the paper, based on the application of the capacity spectrum method. The seismic hazard in the area of the city is described by means of the reduced 5% damped elastic response spectrum. The information on the buildings was obtained by collecting, arranging, improving and completing a broad database of the dwellings and current buildings. The buildings existing in Barcelona are mainly of two types: unreinforced masonry structures and reinforced concrete buildings with waffled-slab floors. The ArcView software was used to create a GIS tool for managing the collected information in order to develop seismic risk scenarios. This study shows that the vulnerability of the buildings is significant in Barcelona and, therefore, in spite of the low-to-moderate seismic hazard in the region, the expected seismic risk is considerable.  相似文献   

16.
评估钢筋混凝土结构抗损性具有重要工程意义,但目前以单因素叠加为基础的评估方法误差较大。为解决此问题,提出基于多元模糊的钢筋混凝土结构地震抗损性评估方法。以Park-Ang地震损伤模型为前提,引入正规化累积耗能参数,得到建筑结构层间损伤表达式,加权平均获取震后建筑结构整体损伤值;利用有害层间位移角参数计算震后结构层间位移角;将获取的结构整体损伤值、层间位移角作为多因素论域,进行多元模糊结构抗损性评估,选取模糊损伤评估数学模型与隶属度函数,克服单一因素影响,计算判别因素权重与结构综合损伤指数,根据结构抗损性能判断规则得到建筑结构抗损性所属标准。经实验测试验证:基于多元模糊的钢筋混凝土结构地震抗损性评估方法精确度大于95%,评估精确性高,是一种有效的钢筋混凝土结构抗损性评估方法。  相似文献   

17.
Performance-based earthquake engineering is a recent focus of research that has resulted in widely developed design methodologies due to its ability to realistically simulate structural response characteristics.Precise prediction of seismic demands is a key component of performance-based design methodologies.This paper presents a seismic demand evaluation of reinforced concrete moment frames with medium ductility.The accuracy of utilizing simplified nonlinear static analysis is assessed by comparison against the results of time history analysis on a number of frames.Displacement profiles,drift demand and maximum plastic rotation were computed to assess seismic demands.Estimated seismic demands were compared to acceptance criteria in FEMA 356.The results indicate that these frames have sufficient capacity to resist interstory drifts that are greater than the limit value.  相似文献   

18.
The interest of in situ measurements (presented in Part I paper) for a seismic assessment of existing buildings is analysed in this paper. It is shown that the experimental modal characteristics obtained on regular concrete structures are described successfully by suited Timoshenko beam modelling. For a given structure, taking into account the experimental data, the corresponding beam model, and choosing the maximum tensile strain of concrete as damage criterion for key structural elements, a maximum level of the ground acceleration can be determined. This so‐called seismic integrity threshold is directly related to the onset of structural damages. This new approach is illustrated on one of the studied buildings. The advantages of using ambient vibrations survey for the vulnerability assessment of existing buildings are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

20.
地震对建筑结构的损伤轻则影响建筑完整性,重则导致建筑崩塌。近几年,地震损伤评估问题得到地震工程研究领域的高度重视,但对点支式玻璃建筑结构的损伤评估研究较少。为此,构建一种点支式玻璃建筑结构地震损伤评估模型。采用基于HHT变换的结构损伤部位识别方法判断地震中点支式玻璃建筑损伤部位,建立点支式玻璃建筑结构地震损伤评估多元联系数模型,评估点支式玻璃建筑损伤部位的损伤情况。结果表明,该评估模型对某地区点支式玻璃建筑结构地震损伤评估情况与实际结果一致,且该模型可控性较强,评估范围全面,评估效率明显优于其他评估模型,应用价值较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号