首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
程理  李光涛  吴昊  余建强  苏刚 《中国地震》2020,36(2):211-220
中甸-大具断裂马家村-大具段位于哈巴雪山北麓及玉龙雪山以北的大具盆地内,总体走向310°~320°,根据卫星影像解译和详细的野外地质地貌调查,认为中甸-大具断裂马家村-大具段自第四纪以来长期活动,横跨断裂的水系右旋位错量可分为8.5~12m、22m左右、47m左右、200~280m、500~510m和1000m左右6个等级。在大具盆地内发现了长约600m的地震地表破裂带,这是该断层段在全新世活动的直接地质证据,在破裂带南东端附近开挖的探槽揭示出自晚更新世以来断裂存在三期活动,可能对应3次地震事件,结合前人在该断裂段获得的地质剖面和断错地貌面测年结果,分析认为马家村-大具段自晚更新世以来至少发生了3次古地震事件,发生时间分别为4910~45 a BP、7000 a BP左右和32.93~19.96ka BP,利用垂直同震位移值估算了水平同震位移量,最终得出每次地震事件的震级为7.5级左右。  相似文献   

2.
中旬-大具断裂南东段晚第四纪活动的地质地貌证据   总被引:1,自引:0,他引:1  
中甸-大具断裂南东段位于哈巴和玉龙雪山北麓,属于川西北次级块体西南边界,断裂总体走向310°~320°,是一条重要的边界断裂。了解该断裂的活动性质、活动时代和滑动速率等对分析川西北次级块体运动,研究该断裂与玉龙雪山东麓断裂的交切关系等问题具有重要意义。文中基于1︰5万活动断层地质填图,对断裂沿线地层地貌、陡坎地貌、地表破裂、典型断层剖面以及河流阶地等进行了详细的研究。研究表明:1)中甸-大具断裂南东段按几何结构、断错地貌表现、断裂活动性可分为马家村—大具次级段和大具—大东次级段。2)通过野外地质调查发现,马家村—大具次级段断错了全新世冲洪积扇,形成了地表破裂,为全新世活动段;而大具—大东次级段虽然也断错了晚更新—全新世地层,但其断错规模及滑动速率均较小,由此认为其全新世以来活动较弱。3)通过分析断裂沿线断层陡坎、水平位错及地表破裂等地质地貌问题,认为马家村—大具次级段的活动性质为右旋走滑兼正断,其晚更新世以来的垂直滑动速率为0. 4~0. 8mm/a,水平滑动速率为1. 5~2. 4mm/a;大具—大东次级段以右旋走滑为主、正断为辅,其晚更新世晚期以来的垂直滑动速率为0. 1mm/a。4)在大具盆地内发现的NW向地表破裂带的形成时代很年轻,不排除是1966年中甸6. 4级地震或1996年丽江7. 0级地震造成的地表破裂。  相似文献   

3.
阿尔金断裂是青藏高原东北缘的一条重要的边界断裂,其几何结构和运动学性质对青藏高原的构造演化具有重要的指示意义。通过卫星影像解译和野外实地调查,在柴达木盆地西缘、索尔库里盆地南约10km的盐壳区发现一长约14km的古地震地表破裂带。该地震破裂带与阿尔金主走滑断裂近平行,根据几何形态大致可将其分为3段走向不同的次级段落,总体走向为N80°E,但局部段落的走向存在变化。该破裂带的构造样式以挤压隆起、次级断裂、裂槽、三角拉分盆地和断陷盆地为主要特征,多相间出现,是典型的走滑断层上的地震破裂带特征,文中利用野外活动断裂地质填图方法标绘了30余个挤压隆起体。另外,考察中还发现在多数挤压隆起上有多次地震重复活动的证据。根据附近盐壳钻孔年龄和地震裂缝中沉积物的年龄结果推测,最新一次地震事件发震时间的下限为全新世。该地震地表破裂带向E进入大通沟南山,其地貌特征表现为较连续的逆冲陡坎,而向W破裂带逐渐消失。通过地震反射剖面推测认为该破裂带向W与阿尔金断裂平顶山次级断裂相接。作为阿尔金断裂的1个构造节点,平顶山将部分应变传递到青藏高原内部的月牙山-大通沟断裂,其多次活动造成了月牙山东约14km长的地表破裂带。  相似文献   

4.
为深入理解汶川地震破裂的构造运动机制,我们选取典型的观测点,利用多种地质地貌标志测绘分析得到了汶川MS8.0地震发震断裂的近地表三维同震滑移矢量。结果显示,北川-映秀断裂上的白水河-高川破裂段北西盘沿88°方位角水平滑移2.58m、垂直滑移3.70m;安县-灌县断裂上的白鹿-汉旺破裂北西盘沿134°方位角水平滑移1.63m,垂直滑移2.00m;小鱼洞破裂带南西盘沿76°~79°方位角水平滑移2.15~2.71m,垂直滑移1.36~1.51m。平行的白水河-高川破裂段和白鹿-汉旺破裂段合计形成1.72m右旋走滑和3.49m垂直断裂带的NW向水平缩短,总滑移方向(106°)与断裂带整体走向(42°)呈64°夹角,整个龙门山推覆构造带处于斜向挤压的构造环境。结合震源过程反演成果的分析显示,斜滑的白水河-高川破裂段和逆冲型白鹿-汉旺破裂段可能是在汶川地震最大的一次子事件过程中以滑移分解的形式同时破裂形成的,滑移分解作用使两条断裂以斜滑与逆冲组合的力学性质产生破裂而非相同性质的斜滑破裂。小鱼洞破裂以低角度斜滑为主,可能是安县-灌县断裂与北川-映秀断裂以滑移分解形式同时破裂的纽带。小鱼洞断裂是龙门山断裂带长期处于斜向挤压的构造环境的产物,不只是逆冲断裂系中的简单捩断层。  相似文献   

5.
青海玉树M_S7.1地震两个典型地点的地表破裂特征   总被引:6,自引:2,他引:4       下载免费PDF全文
2010年4月14日在青海省玉树县发生了MS7.1地震,形成了长达65km的地表破裂带,甘达村西D1、果庆益荣松多D2是地表破裂带上破裂特征具代表性的2个地点。这2个地点的同震地表破裂特征调查结果显示:1)破裂沿先存的断裂晚第四纪活动遗迹展布,在甘达村西主要表现为张剪切破裂呈雁列状展布,在不连续的岩桥区分布了挤压鼓包,地表破裂带主要集中在古地震坳槽中,通过测量一个错断的围墙得到该点的位错量为1.4m;2)在果庆益荣松多,山前坡积物中展布的破裂带由斜列距约30m的次级破裂右阶斜列组成,而次级破裂则由一系列斜列距3~5m的单条破裂右阶斜列组成,单条破裂主要表现为挤压鼓包-张裂缝相间排列与裂缝带等2种破裂样式,在河谷中则表现为挤压垄脊和陷落塘,实测栅栏位错量为1.3m;3)破裂整体为左旋走滑性质,未见明显垂直错动分量,破裂样式为典型的走滑破裂特征,地表破裂带沿先存断错地貌分布,反映晚第四纪活动的甘孜-玉树断裂是此次地震的发震断裂,该断裂大震活动具有原地重复发生的特点  相似文献   

6.
为深入理解汶川地震破裂的构造运动机制,本文选取典型的观测点,利用多种地质地貌标志测绘分析得到了汶川Ms8.0地震发震断裂的近地表三维同震滑移矢量.结果显示,北川-映秀断裂上的白水河-高川破裂段北西盘沿88°方位角水平滑移2.58 m、垂直滑移3.70 m;安县-灌县断裂上的白鹿-汉旺破裂北西盘沿134°方位角水平滑移1.63 m,垂直滑移2.00 m;小鱼洞破裂带南西盘沿76°~79°方位角水平滑移2.15~2.71 m,垂直滑移1.36~1.51 m.平行的白水河-高川破裂段和白鹿-汉旺破裂段合计形成1.72 m右旋走滑和3.49 m垂直断裂带的NW向水平缩短,总滑移方向(106°)与断裂带整体走向(42°)呈64°夹角,整个龙门山推覆构造带处于斜向挤压的构造环境.结合震源过程反演成果的分析显示,斜滑的白水河-高川破裂段和逆冲型白鹿-汉旺破裂段可能是在汶川地震中最大的一次子事件过程以滑移分解的形式而同时破裂形成的,滑移分解作用使两条断裂以斜滑与逆冲组合的力学性质产生破裂而非相同件质的斜滑破裂.小鱼洞破裂以低角度斜滑为主,可能是安县-灌县断裂与北川-映秀断裂以滑移分解形式同时破裂的纽带.小鱼洞断裂是龙门山断裂带长期处于斜向挤压的构造环境的产物,不只是逆冲断裂系中的捩断层.  相似文献   

7.
田勤俭  张军龙 《地震地质》2008,30(1):324-332
阿尔泰构造带的活动断裂主要为NW—NNW向。按构造位置可分为阿尔泰西缘活动断裂带、阿尔泰中央活动断裂带和阿尔泰东缘活动断裂带。阿尔泰东缘活动构造带由科布多(Hovd)活动断裂带、哈尔乌苏湖(Har Us)活动断裂带2条大型右旋走滑活动断裂和中间的挤压盆地带构成。在2条走滑断裂带上,前人发现多处地震地表破裂带。通过对阿尔泰东缘构造带中南段地区的野外调查,在哈尔乌苏湖断裂带中段的Jargalant断裂、科布多断裂带南段的Tugen gol断裂上新发现地震地表破裂带。其中,沿Jargalant断裂地震地表破裂带长约50km,右旋位错量约4~5m,是一次规模大、活动较新的破裂事件。可见,在阿尔泰东缘活动断裂带的不同断裂段上均有保存较好的地震地表破裂,显示阿尔泰东缘是活动强烈的地震构造带  相似文献   

8.
2001年11月14日昆仑山口西发生81级地震.应用高分辨率卫星影像进行地震地表破裂带解译,10m分辨率SPOT卫星影像能够清楚地反映出地震地表破裂主破裂带的形迹, 1m分辨率IKONOS影像能反映出地震地表破裂的精细结构及运动特征.结果表明,昆仑山口西81级地震地表破裂带主要位于东昆仑断裂南麓冲洪积台地或冲洪积台地后缘的地貌陡变带和断层谷地里,是一条叠置在先存破裂带上的地震破裂带.在布喀达坂峰以东的地表破裂带长近350km,由3条次级破裂组成,走向100°.流经破裂带的一系列沟谷发生左旋同步扭曲,平均滑动速率为134~168mm/a,属AA级活动水平.最大左旋位错78m,地震破裂带最宽达1250m,宏观震中位于93°17′E,35°47′N,即玉西峰附近的地震地表破裂带上.  相似文献   

9.
2022年1月8日,青海省门源县发生了MS6.9地震。为及时全面了解地震同震地表破裂带的空间分布并准确判定发震构造,文中通过对震后高分七号遥感影像进行解译判读,综合野外考察核实,获得了门源MS6.9地震同震地表破裂带的展布情况,并识别出多种典型的同震破裂地貌,总结了多种同震地貌的影像特征。结果表明,此次地震产生了2条主要的地表破裂带,呈左阶斜列展布。北支主破裂带分布于冷龙岭断裂西段,长约22km,走向100°N~120°E;南支次级破裂带分布在托莱山断裂东段的局部段上,长约4km,走向为N90°E, 2条破裂带总长约26km;沿破裂带形成了一系列典型左旋走滑同震地貌,如张裂隙、张剪裂隙、挤压脊、挤压鼓包、左旋纹沟、左旋断错路基等;在此基础上,文中还对冷龙岭地区典型左旋地貌的累积位错进行了测量,并与前人的测量结果作对比研究,得到了较为准确的测量结果。文中基于高分影像对断裂沿线典型的断错地貌开展研究,不仅可为高分七号卫星数据的地质应用积累实例,所得结果也可为未来构造地貌研究提供强有力的数据支撑。  相似文献   

10.
为深入理解汶川地震破裂的构造运动机制,本文选取典型的观测点,利用多种地质地貌标志测绘分析得到了汶川MS8.0地震发震断裂的近地表三维同震滑移矢量.结果显示,北川—映秀断裂上的白水河—高川破裂段北西盘沿88°方位角水平滑移2.58 m、垂直滑移3.70 m;安县—灌县断裂上的白鹿—汉旺破裂北西盘沿134°方位角水平滑移1.63 m,垂直滑移2.00 m;小鱼洞破裂带南西盘沿76°~79°方位角水平滑移2.15~2.71 m,垂直滑移1.36~1.51 m.平行的白水河—高川破裂段和白鹿—汉旺破裂段合计形成1.72 m右旋走滑和3.49 m垂直断裂带的NW向水平缩短,总滑移方向(106°)与断裂带整体走向(42°)呈64°夹角,整个龙门山推覆构造带处于斜向挤压的构造环境.结合震源过程反演成果的分析显示,斜滑的白水河—高川破裂段和逆冲型白鹿—汉旺破裂段可能是在汶川地震中最大的一次子事件过程以滑移分解的形式而同时破裂形成的,滑移分解作用使两条断裂以斜滑与逆冲组合的力学性质产生破裂而非相同性质的斜滑破裂.小鱼洞破裂以低角度斜滑为主,可能是安县—灌县断裂与北川—映秀断裂以滑移分解形式同时破裂的纽带.小鱼洞断裂是龙门山断裂带长期处于斜向挤压的构造环境的产物,不只是逆冲断裂系中的捩断层.  相似文献   

11.
丽江7.0级地震震源环境及其破裂过程讨论   总被引:14,自引:1,他引:14  
本通过对丽江Ms7.0地震发生环境和破裂过程的分析讨论,得到以下认识:丽江地震发生在滇西北裂陷区北部块体内,这是一个由三组深断裂切割包围的三角形断块,断块内发育有裂陷盆地(大具-丽江裂陷盆地);该区除了水平应力作用外,还有很强的来自地幔物质上隆引起的垂直应力作用;主余震分布在地壳一个由相对低速区包围的高速区内。地壳介质结构横向非均匀性-地壳高速块体的存在,可能是丽江地震震源成核的重要成因。丽江7  相似文献   

12.
北京时间2014年8月3日16时30分,云南省鲁甸县发生了MS 6.5地震,本次地震的发震构造为包谷垴-小河断裂。野外调查发现,王家坡不稳定斜坡上的地表破裂在整个破裂带中比较具有代表性,其地表破裂带整体走向N45°W-N50°W,并且由剪切破裂、张剪切破裂、压剪切破裂、张性破裂以及鼓包等典型地表破裂组成。其中左、右地表破裂边界与发震断层的出露位置一致,由断层错动造成;而部分地表破裂与断层的位置不重合,其成因分为2种,一种是发震断层导致的一些次级地表破裂,另一种是地震引发的滑坡后缘破裂。地表破裂类型和基本组合特征显示出王家坡潜在不稳定斜坡上的地表破裂带具有左旋走滑的性质。  相似文献   

13.
The southeast section of Zhongdian-Daju Fault is located in the northern part of Haba and Yulong Snow Mountain, belonging to the southwestern boundary of the secondary block in northwestern Sichuan, an important boundary fault striking 310°~320° on the whole. The nature of the fault, the age of its activity and the slip rate are of great significance for the analysis of the secondary block movement in the northwestern Sichuan and the intersection relationship with the eastern piedmont fault of Yulong Mountains. Based on the 1 ︰ 5 million-scale active fault geological mapping, this paper studies in detail the stratigraphic landform, scarp landform, surface rupture, typical fault profile and river terrace along the fault. Based on the research results, we divide the southeastern section of Zhongdian-Daju Fault into two sub-segments, the Majiacun-Daju sub-segment and the Daju-Dadong sub-segment, according to the geometric structure, fault landforms and fault activity. (1)Fault scarp:In the Majiacun-Daju sub-segment, the fault parallelly controls the two sides of the Haba fault depression. It cuts the late Pleistocene moraine deposits, forming a fault scarp of about 4.5km long and(14±2)m high. The continuity of the scarp is very good, and it is also very obvious in the remote sensing image. In the Daju-Dadong sub-segment, a scarp with a height of about 2m is formed, and an optical luminescence dating sample is collected from the upper part of the gravel layer on the second-order terrace to obtain an age of(22±2.2)ka. (2)Horizontal dislocation:In the Majiacun-Daju sub-segment, through the analysis of the development of outwash fans in the area and the measurement and induction of the gully dislocations, it is considered that there are at least three stages of outwash fans developed in the area and there may be four phases of faulting. That is, the earliest-stage outwash fan and gully are horizontally dislocated about 1km; the second-stage outwash fan and gully are horizontally dislocated about 47m, and the vertical dislocation is about(14±2)m; the gully in the third stage outwash fan is horizontally dislocated twice, the first dislocation formed a beheaded gully with a dislocation of 22m, and the second formed a beheaded gully with a dislocation of 8.5m. It is further proved that the fault has strong activity since the Holocene in the Majiacun to Daju area. In the Daju-Dadong sub-segment, there are no obvious horizontal dislocations in the alluvial deposits since the Holocene. Only 3~4 gullies are found to be offset right-laterally in the ridges east of Wenhe Village, with the maximum dislocation of 210m, which may be the older phase dislocation. (3)Surface rupture:In the northwest direction of Dabazi Village on the T3 terrace in the basin between Majiacun and Daju, an earthquake surface rupture zone is found, extending in the NW direction. The rupture zone left clear traces on the about 1m-thick, hard T3 terrace surface formed by calcification of sand gravels, and the overburden either upwarps and bulges, or ruptures, generates ground fissures, or forms small pull-apart "depressions" locally. However, the rupture zone is not large in size, about 350m long, 60m wide at the widest point, and 0.3~1.5m high. It is partially en-echelon or obliquely arranged, dominated by compressive ruptures. Through observation, the possibility of artificial transformation is ruled out for these upwarping bulges, ruptures or ground fissures. The fault section is found in the southeast direction of the rupture zone. The slickensides at the section show that the fault is dominated by right-lateral strike-slip with a small amount of thrust. In the eastern sub-segment, only intermittently distributed surface ruptures are found in the northern part of the village, and the scale is small. In summary, through the field geological survey, it is found that the Majiacun-Daju sub-segment is a Holocene active segment. Though the Daju-Dadong sub-segment also offset the late Pleistocene to Holocene strata, it is considered that its Holocene activity is weak in terms of either the dislocation amount or the slip rate of this segment. By analyzing the geological and geomorphological evidences, such as fault scarps, horizontal dislocation and surface ruptures along the fault, it is considered that the Majiacun-Daju sub-segment is a right-lateral strike-slip fault with a normal faulting component, and its vertical slip rate since the late Pleistocene is(0.4~0.8)mm/a, the horizontal slip rate is 1.5~2.4mm/a. The Daju-Dadong sub-segment is dominated by right-lateral strike-slip with a normal faulting component, and its vertical slip rate since the late Late Cenozoic is 0.1mm/a. The formation of the NW-trending surface rupture zone found in the Daju Basin is very young, where there are only two major earthquakes, namely, the MS6.4 1966 Zhongdian earthquake and the 1996 Lijiang MS7.0 earthquake, and both earthquakes produced NW-oriented surface rupture zones. Therefore, it cannot be ruled out that the rupture zone is a product of the 1966 Zhongdian MS6.4 earthquake or the 1996 Lijiang MS7.0 earthquake.  相似文献   

14.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

15.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

16.
对历史记载的公元1738年玉树西北地震的震级及其发震构造目前仍存有争议。卫星影像解译和野外调查发现沿甘孜-玉树断裂当江段分布一条长约75km的左旋走滑地震地表破裂带,其最大同震水平位移约2.1m。综合分析该地表破裂带特征、探槽揭露信息、测年结果以及历史文献记载等资料,认为当江段应为1738年玉树西北地震的发震断层,基于震例类比和经验公式估算该次地震的震级为71/2级。沿甘孜-玉树断裂的历史地震破裂分布显示,玉树段在隆宝镇以西存在近50km长的破裂空段;当江段距1738年地震的离逝时间也可能已经接近其地震复发周期,上述两个段落未来均存在大震危险。  相似文献   

17.
The Hongyapu M7 1/4 earthquake in 1609 occurred on the Fodongmiao-Hongyazi fault, which is a Holocene active thrust in the middle segment of the northern Qilianshan overthrust fault zone, located in the north-eastern edge of the Tibet plateau. This earthquake caused death of more than 840 people, ruined the Hongyapu Village and had an affected area ca. 200km2. Previous work provided different opinions on the length of the earthquake surface rupture zone, such as 60km from the Bailanghe western riverbank to the Fenglehe eastern river bank, and only 11km from the Hongyazi village to eastern edge of the Hujiatai anticline. And the surface rupture zone appears in the western and middle segments of the Fodongmiao-Hongyazi fault zone. Our detailed geomorphic analysis and topographic survey found that the surface rupture zone with a total length of ca 95km is present on the new geomorphic surfaces which are slightly higher than the modern allvial-dilvial fans and riverbeds, which begins from the Hongshuiba river, Jiuquan in the west extending to the Toudaodongwan, southern Gansu in the east along the Fodongmiao-Hongyazi Fault. The surface rupture zone occurred later than 0 A D, proved by the study of trenchs and chronology. Compared to the previous research on the epicenters of the historical major earthquakes in and around the study region, this surface rupture zone is considereded to be the surface rupture zone of the Hongyapu earthquake of 1609 in Gansu provice. Average vertical co-seismic displacement of the 1609 Hongyapu earthquake is 1.1m with maximum 1.8m, dominated by thrusting. The NNW striking Xiaoqun segment shows thrust with a component of dextral strike slip and the NEE-trending East Hongshancun segment is also mainly thrust but with sinistral strike slipp. The lateral movement could be caused by the local change of the fault strike direction. Based on the length of surface ruptures, the maximum coseismic displacement and fault dipping, this event is estimated to be of ca. MW7.0~MW7.4, close to the M7 1/4 suggested by previous studies.  相似文献   

18.
2022年1月8日,青海省海北藏族自治州门源县发生MS6.9地震,震中位于青藏高原东北缘地区祁连—海原断裂带的冷龙岭断裂和托勒山断裂构造转换区域(37.77°N,101.26°E)。震后野外现场考察结果表明,此次地震形成的同震地表破裂带总长度约为26 km,整体走向NWW向,破裂性质以左旋走滑局部逆冲为主。断层错动造成的破坏形式以雁列式组合的张裂隙、张剪裂隙、挤压鼓包、断层陡坎等为主。其中,道河至硫磺沟段地表破裂最为强烈,规模大且连续性好,造成的震害最为显著,地表破裂规模向东、西两端逐渐衰减。破裂带穿过区域内多条河流,造成显著的冰面破裂变形,并沿河岸形成一系列的边坡崩塌、滚石等地质灾害。综合破裂带及震害规模分析,宏观震中位于道河至硫磺沟地区。  相似文献   

19.
Aiming  Ian Shinichi  Uda 《Island Arc》1996,5(1):1-15
Abstract The earthquake surface ruptures on the northern side of Awaji Island accompanying the 1995 Southern Hyogo Prefecture Earthquake in Japan consist of three earthquake surface rupture zones called the Nojima, Matsuho, and Kusumoto Earthquake Surface Rupture Zones. The Nojima Earthquake Surface Rupture Zone is - 18 km long and was formed from Awaji-cho at the northern end of Awaji Island to Ichinomiya-cho. It occurred along the pre-existing Nojima geological fault in the northern segment and as a new fault in the southern segment. The northern segment of the Nojima Earthquake Surface Rupture Zone is composed of some subparallel shear faults showing a right-step en echelon form and many extensional cracks showing a left-step en echelon form. The southern segment consists of some discontinuous surface ruptures which are concentrated in a narrow zone a few tens of meters in width. This surface rupture zone shows a general trend striking north 30°-60° east, and dipping 75°-85° east. The deformational topographies and striations on the fault plane generated during the co-seismic displacement show that the Nojima Earthquake Surface Rupture Zone is a right-lateral strike-slip fault with some reverse component. Displacements measured at many of the outcrops are generally 100-200 em horizontally and 50-100 em vertically in the northern segment and a few em to 20 em both horizontally and vertically in the southern segment. The largest displacements are 180 em horizontally, 130 em vertically, and 215 em in netslip measured at the Hirabayashi fault scarp. The Matsuho Earthquake Surface Rupture Zone striking north 40°-60° west was also found along the coastline trending northwest-southeast in Awaji-cho for ~1 km at the northern end of Awaji Island. The Kusumoto Earthquake Surface Rupture Zone occurred along the pre-existing Kusumoto geological fault for ~ 1.5 km near the northeastern coastline, generally striking north 35°-60° east, dipping 60°-70° west. From the morphological and geomorphological characteristics, the Nojima Earthquake Surface Rupture Zone can be divided into four segments which form a right-step en echelon formation. The geological and geomorphological evidence and the aftershock epicenter distributions show clearly that the distributions and geometry of these four segments are controlled by the pre-existing geological structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号