首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The complexity of the evapotranspiration process and its variability in time and space have imposed some limitations on previously developed evapotranspiration models. In this study, two data‐driven models: genetic programming (GP) and artificial neural networks (ANNs), and statistical regression models were developed and compared for estimating the hourly eddy covariance (EC)‐measured actual evapotranspiration (AET) using meteorological variables. The utility of the investigated data‐driven models was also compared with that of HYDRUS‐1D model, which makes use of conventional Penman–Monteith (PM) model for the prediction of AET. The latent heat (LE), which is measured using the EC method, is modelled as a function of five climatic variables: net radiation, ground temperature, air temperature, relative humidity, and wind speed in a reconstructed landscape located in Northern Alberta, Canada. Several ANN models were evaluated using two training algorithms of Levenberg–Marquardt and Bayesian regularization. The GP technique was used to generate mathematical equations correlating AET to the five climatic variables. Furthermore, the climatic variables, as well as their two‐factor interactions, were statistically analysed to obtain a regression equation and to indicate the climatic factors having significant effect on the evapotranspiration process. HYDRUS‐1D model as an available physically based model was examined for estimating AET using climatic variables, leaf area index (LAI), and soil moisture information. The results indicated that all three proposed data‐driven models were able to approximate the AET reasonably well; however, GP and regression models had better generalization ability than the ANN model. The results of HYDRUS‐1D model exhibited that a physically based model, such as HYDRUS‐1D, might be comparable or even inferior to the data‐driven models in terms of the overall prediction accuracy. Based on the developed GP and regression models, net radiation and ground temperature had larger contribution to the AET process than other variables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Accurate estimates of seasonal evapotranspiration (ET) at different temporal and spatial scales are essential for understanding the biological and environmental determinants of ecosystem water balance in arid regions and the patterns of water utilization by the vegetation. For this purpose, remote sensing ET estimates of a Patagonian desert in Southern Argentina were verified with field measurements of soil evaporation and plant transpiration using an open top chamber. Root distribution and seasonal variation in soil volumetric water content were also analysed. There was a high correlation between remote sensing and field measurements of ecosystem water fluxes. A substantial amount of the annual ET occurred in spring and early summer (73.4 mm) using winter rain stored in the soil profile and resulting in water content depletion of the upper soil layers. A smaller amount of annual ET was derived from few rainfall events occurring during the mid or late summer (41.4 mm). According to remote sensing, the 92.9% of the mean annual precipitation returns to the atmosphere by transpiration or evaporation from the bare soil and by canopy interception. Only 7.1% infiltrates to soil layers deeper than 200 cm contributing to the water table recharge. Fourier time series analysis, cross‐correlation methods and multiple linear regression models were used to analyse 11 years of remote sensing data to assess determinants of water fluxes. A linear model predicts well the variables that drive complex ecosystem processes such as ET. Leaf area index and air temperature were not linearly correlated to ET because of the multiple interaction among variables resulting in time lags with ET variations and thus these two variables were not included in the linear model. Soil water content, the fraction of photosynthetic active radiation and precipitation explained 86% of the ET monthly variations. The high volumetric water content and the small seasonal variations at 200‐cm depth were probably the result of little water uptake from deeper soil horizons by roots with low hydraulic conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
气候条件的变异和流域下垫面特征的改变是影响流域蒸散耗水的重要因素。本文聚焦于1900 2008年间全球83个典型流域数据,基于Budyko水热耦合平衡方程,探究100多年间不同条件下流域蒸散耗水率(AET/P)对气候和下垫面特征变异响应关系的稳定性。结果表明:(1)从长时间尺度看,大部分流域蒸散耗水率与气候干燥指数(PET/P)和流域特征参数(n值)变异的响应关系呈现较强的时间稳定性。从短时间尺度而言,半湿润流域内蒸散耗水率对干燥指数的响应系数?(AET/P)/?(PET/P)在20世纪内持续降低。不同气候条件下蒸散耗水率对流域特征参数的响应系数?(AET/P)/?(n)的变化差异显著。分不同下垫面特征来看,低n值(n<2)流域内AET/P对n值的变化更为敏感;(2)气候条件(PET/P)是大多数湿润区内蒸散耗水率的主导因素,在干旱与半干旱流域内,下垫面特征参数(n值)对AET/P贡献最大。在湿润区内,PET/P对AET/P的贡献程度随时间小幅提升;半湿润区内PET/P对AET/P的贡献度呈下降趋势。在低n值(n<2;流域持水能力较弱)流域内,n值对AET/P的贡献更多。在...  相似文献   

5.
Evapotranspiration is an important component of hydrological cycle and a key input to hydrological models. Therefore, analysis of the spatiotemporal variation of potential evapotranspiration (PET) will help a better understanding of climate change and its effect on hydrological cycle and water resources. In this study, the Penman–Monteith method was used to estimate PET in the Wei River basin (WRB) in China based on daily data at 21 meteorological stations during 1959–2008. Spatial distribution and temporal trends of annual and seasonal PET were analysed by using the Spline interpolation method and the Mann–Kendall test method. Abrupt changes were detected by using the Pettitt test method. In order to explore the contribution of key meteorological variables to the variation of PET, the sensitivity coefficients method was employed in this study. The results showed that: (1) mean annual and seasonal PET in the WRB was generally decreasing from northeast to southwest. Summer and spring made the major contributions to the annual values; (2) annual and seasonal PET series in most part of the WRB exhibited increasing trends; (3) abrupt changes appeared in 1993 for annual and spring PET series for the entire basin, while summer value series was detected in the late 1970s. (4) Relative humidity was the most sensitive variable for PET in general for the WRB, followed by wind speed, air temperature and solar radiation. In the headwater and outlet of the WRB, relative humidity and air temperature were the most sensitive variables to PET, while relative humidity and wind speed were more influential in most part of the middle‐lower region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

7.
8.
The contribution of atmospheric pressure and local wind to sea level variability at Goa (West coast of India) for the period 2007–2008 is investigated. Sea level data from a tide gauge are compared with measured local surface meteorological as well as oceanographic data. Multilinear regression analysis is used to resolve the dependence of sea level on various forcing parameters. The multilinear regression analysis performed over approx. 2-year data shows that the local surface meteorological data and water temperature account for the sea level variability only up to 6%. The accounted sea level variability increases to 25%, when the local wind and the surface currents obtained from satellite altimetry in the near vicinity of the study area are incorporated in the regression analysis. The contribution of local wind increases substantially when the regression is performed over a 2-month duration, and it is variable within the year. During the summer monsoon season (May–September), the sea level variability attributable to wind is up to 47% and 75%, respectively, for 2007 and 2008; however, it reduces to <20% during the winter monsoon (November–February) season. A significant part of the variability observed in sea level remains unaccounted for and is attributed to remote forcing.  相似文献   

9.
Daily actual evapotranspiration (AET) and seasonal AET values are of great practical importance in the management of regional water resources and hydrological modelling. Remotely sensed AET models and Landsat satellite images have been used widely in producing AET estimates at the field scale. However, the lack of validation at a high spatial frequency under different soil water conditions and vegetation coverages limits their operational applications. To assess the accuracies of remote sensing‐based AET in an oasis‐desert region, a total of 59 local‐scale daily AET time series, simulated using HYDRUS‐1D calibrated with soil moisture profiles, were used as ground truth values. Of 59 sampling sites, 31 sites were located in the oasis subarea and 28 sites were located in the desert subarea. Additionally, the locally validated mapping evapotranspiration at high resolution with internalized calibration surface energy balance model was employed to estimate instantaneous AET values in the area containing all 59 of the sampling sites using seven Landsat subimages acquired from June 5 to August 24 in 2011. Daily AET was obtained using extrapolation and interpolation methods with the instantaneous AET maps. Compared against HYDRUS‐1D, the remote sensing‐based method produced reasonably similar daily AET values for the oasis sites, while no correlation was observed for daily AET estimated using these two methods for the desert sites. Nevertheless, a reasonable monthly AET could be estimated. The correlation analysis between HYDRUS‐1D‐simulated and remote sensing‐estimated monthly AET values showed relative root‐mean‐square error values of 15.1%, 12.1%, and 12.3% for June, July, and August, respectively. The root mean square error of the summer AET was 10.0%. Overall, remotely sensed models can provide reasonable monthly and seasonal AET estimates based on periodic snapshots from Landsat images in this arid oasis‐desert region.  相似文献   

10.
Gu  Fengxue  Cao  Mingkui  Wen  Xuefa  Liu  Yunfen  Tao  Bo 《中国科学:地球科学(英文版)》2006,49(2):241-251

Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (R e), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.

  相似文献   

11.
Since October 2001, four soil CO2 flux stations were installed in the island of São Miguel (Azores archipelago), at Fogo and Furnas quiescent central volcanoes. These stations perform measurements by the accumulation chamber method and, as the gas flux may be influenced by external variables, the stations are equipped with several meteorological sensors. Multivariate regression analysis applied to the large datasets obtained allowed observing that the meteorological variables may influence the soil CO2 flux oscillations from 18% to 50.5% at the different monitoring sites. Additionally, it was observed that meteorological variables (mainly soil water content, barometric pressure, wind speed and rainfall) play a different role in the control of the gas flux, depending on the selected monitoring site and may cause significant short-term (spike-like) fluctuations. These divergences may be potentially explained by the porosity and hydraulic conductivity of the soils, topographic effects, drainage area and different exposure of the monitoring sites to the weather conditions. Seasonal effects are responsible for long-term oscillations on the gas flux.  相似文献   

12.
Stream water-use is essential for both agricultural and hydrological management and yet not many studies have explored its non-stationarity and nonlinearity with meteorological variables. This study proposed a deep-learning based model to estimate agricultural water withdrawal using hydro-meteorological variables, which projected the changes of agricultural water withdrawal influenced by climate change of future. The relationships between meteorological variables and stream water-use rate (WUR) were quantified using a deep belief network (DBN). The influences of precipitation, potential evapotranspiration, and monthly averaged WUR on the performance of the developed DBN model were tested. As a result, this DBN with potential evapotranspiration (PET) provided better performances than precipitation to estimate the WUR. The PET of multi-model scenarios for Representative Concentration Pathways 8.5 would be increased as time goes by, and thus leads to increase WUR estimated by DBN in three basins, located in South Korea during the future period. On the contrary, water availability expected to decrease compared to the current. Therefore, managing water-uses and improving efficiencies can be prepared for the change in agricultural water-use by climate change in the future.  相似文献   

13.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(3):623-638
Abstract

Estimates of potential evapotranspiration (PET) and reference evapotranspiration (RET) were compared over the Mekong and Yellow river basins, representing humid and semi-arid Asian monsoon regions. Multiple regression relationships between monthly RET, PET, LAI (leaf area index) and climatic variables were explored for different vegetation types. Over the Mekong River basin, the spatial average of RET is only 1.7% lower than PET; however, RET is 140% higher than PET over parts of the Tibetan Plateau, due to the short and sparse grassland, and 30% lower than PET in parts of the lower basin due to the tall and well-developed forests. Over the Yellow River basin, RET is estimated to be higher than PET, on average about 50% higher across the whole basin, due to the generally sparse vegetation. A close linear relationship between annual RET and PET allows the establishment of a regional regression to predict monthly PET from monthly RET, climatic variables and/or vegetation LAI. However, the large prediction errors indicate that the Shuttleworth-Wallace (S-W) model, although it is more complex, should be recommended due to its more robust physical basis and because it successfully accounts for the effect of changing land surface conditions on PET. The limited available field data suggest that the S-W estimate may be more realistic. It was also found that vegetation conditions in summer are primarily controlled by the regional antecedent precipitation in the cold and dry seasons over the Loess Plateau in the middle reaches of the Yellow River.  相似文献   

15.
This study presents daily and seasonal variations of PAH concentrations in Erzurum atmosphere in summer season of 2008 and in winter seasons of 2008 and 2009. Sampling location at Erzurum urban center was selected to represent the effects of traffic (University junction). 18 PAH compounds were analyzed by GC–MS. Average total PAH concentration (gas + particulate) of 18 PAH compounds were measured during 2008 winter (431 ngm?3) and summer (103 ngm?3) seasons at the University junction. Daily and seasonal variations of PAH compounds were investigated and compared with other urban centers in the literature. Multiple linear regression and artificial neural network (ANN) models were constructed to determine the impacts of meteorological parameters on measured individual PAH concentrations. Results of the multiple linear regression and ANN models indicated that wind speed, wind direction and intensity of total solar radiation were the most significant factors for the measured concentrations of PAH compounds.  相似文献   

16.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

18.
The adsorption of water vapor by soil is one of the crucial contributors to non-rainfall water on land surface, particularly over semi-arid regions where its contribution can be equivalent to precipitation and can have a major impact on dry agriculture and the ecological environment in these regions. However, due to difficulties in the observation of the adsorption of water vapor,research in this area is limited. This study focused on establishing a method for estimating the quantitative observation of soil water vapor adsorption(WVA), and exploring the effects of meteorological elements(e.g., wind, temperature, and humidity) and soil environmental elements(e.g., soil temperature, soil moisture, and the available energy of soil) on WVA by soil over the semi-arid region, Dingxi, by combining use of the L-G large-scale weighing lysimeter and meteorological observation. In addition, this study also analyzed the diurnal and annual variations of WVA amount, frequency, and intensity by soil, how they changed with weather conditions, and the contribution of WVA by soil to the land surface water budget. Results showed that WVA by soil was co-affected by various meteorological and soil environmental elements, which were more likely to occur under conditions of relative humidity of 6.50% and the diurnal variation of relative humidity was large, inversion humidity, wind velocity of 3.4 m/s,lower soil water content, low surface temperature and slightly unstable atmospheric conditions. There was a negative feedback loop between soil moisture and the adsorption of water vapor, and, moreover, the diurnal and annual variations of WVA amount and frequency were evident—WVA by soil mainly occurred in the afternoon, and the annual peak appeared in December and the valley in June, with obvious regional characteristics. Furthermore, the contribution of WVA by soil to the land surface water budget obviously exceeded that of precipitation in the dry season.  相似文献   

19.
Some aspects of the monsoon circulation and monsoon rainfall   总被引:1,自引:0,他引:1  
Summary The south Asian summer monsoon from June to September accounts for the greater part of the annual rainfall over most of India and southeast Asia. The evolution of the summer and winter monsoon circulations over India is examined on the basis of the surface and upper air data of stations across India. The salient features of the seasonal reversals of temperature and pressure gradients and winds and the seasonal and synoptic fluctuations of atmospheric humidity are discussed. The space-time variations of rainfall are considered with the help of climatic pentad rainfall charts and diagrams. The rainfall of several north and central Indian stations shows a minimum around mid-August and a maximum around mid-February which seem to be connected with the extreme summer and winter positions of the ITCZ and the associated north-south shifts in the seasonal circulation patterns. Attention is drawn to the characteristic features of the monsoon rainfall that emerge from a study of daily and hourly rainfall of selected stations. Diurnal variations of temperature, pressure, wind and rainfall over the monsoon belt are briefly treated.  相似文献   

20.
Peatlands in the Western Boreal Plains act as important water sources in the landscape. Their persistence, despite potential evapotranspiration (PET) often exceeding annual precipitation, is attributed to various water storage mechanisms. One storage element that has been understudied is seasonal ground ice (SGI). This study characterized spring SGI conditions and explored its impacts on available energy, actual evapotranspiration, water table, and near surface soil moisture in a western boreal plains peatland. The majority of SGI melt took place over May 2017. Microtopography had limited impact on melt rates due to wet conditions. SGI melt released 139mm in ice water equivalent (IWE) within the top 30cm of the peat, and weak significant relationships with water table and surface moisture suggest that SGI could be important for maintaining vegetation transpiration during dry springs. Melting SGI decreased available energy causing small reductions in PET (<10mm over the melt period) and appeared to reduce actual evapotranspiration variability but not mean rates, likely due to slow melt rates. This suggests that melting SGI supplies water, allowing evapotranspiration to occur at near potential rates, but reduces the overall rate at which evapotranspiration could occur (PET). The role of SGI may help peatlands in headwater catchments act as a conveyor of water to downstream landscapes during the spring while acting as a supply of water for the peatland. Future work should investigate SGI influences on evapotranspiration under differing peatland types, wet and dry spring conditions, and if the spatial variability of SGI melt leads to spatial variability in evapotranspiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号