首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The general time-domain boundary element in cylindrical co-ordinates developed for the study of wave propagation in a layered half-space is extended to the response analysis of single piles under horizontal transient excitations. The pile is treated as a beam, and therefore, only the bending stiffness has to be considered in the analysis. As required by the non-axisymmetric nature of the problem, the soil is modelled by boundary (cylindrical) elements with the vertical, radial and tangential displacements as well as their corresponding tractions as independent variables. The characteristic matrices for the two different types of element can be formed in the usual manner, and they are combined to form the equation of motion for the whole system by virtue of compatibility and equilibrium conditions along the pile-soil interface. The transient responses of a pile under Heaviside loads are found to converge to the static values. Parametric studies are carried out to reveal the influences of pile-soil stiffness ratio (Ep/Es) and soil layering.  相似文献   

2.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Pan evaporation (Ep) is an important indicator of water and energy and the decline of Ep has been reported in many regions over the last decades. The climate and Ep are dependent on each other. In this study, the temporal trends of Ep and main Ep drivers, namely mean air temperature (Ta), wind speed (u), global solar radiation (Rs), net long‐wave radiation(Rnl) and vapour pressure deficit (D) from 1970 to 2012, were calculated on the basis of 26 meteorological stations on the Tibetan Plateau. The arithmetic average of Ep from 26 stations decreased with the rate of ?11.91 mm a?2; the trends of Rs, Rnl, Ta, u and D were ?1.434 w m?2 decade?1, 0.2511 w m?2 decade?1, 0.3590°C decade?1, ?0.2376 m s?1 decade?1 and 9.523 Pa decade?1, respectively. The diffuse irradiance is an essential parameter to model Ep and quantify the contribution of climatic factors to changing Ep. 60 724 observations of Rs and diffuse solar irradiance (Rd) from seven of the 26 stations were used to develop the correlation between the diffuse fraction (Rd/Rs), and the clearness index (Rs/Ro). On the basis of the estimation of the diffuse component of Rs and climatic data, we modified the PenPan model to estimate Chinese micro‐pan evaporation (Ep) and assess the attribution of Ep dynamics using partial derivatives. The results showed that there was a good agreement between the observed and calculated daily Ep values. The observed decrease in Ep was mostly due to declining wind speed (?13.7 mm a?2) with some contributions from decreasing solar irradiance (?3.1 mm a?2); and the increase of temperature had a large positive effect (4.55 mm a?2) in total whilst the increase of Rnl had insignificant effect (0.35 mm a?2) on Ep rates. The change of Ep is the net result of all the climatic variables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The prediction of soil moisture content, θ, as a function of depth, z, and time, t, is of fundamental importance for applications in many hydrological processes. The main objective of this paper is to provide an approach to solve this problem at a local scale in soils with vegetation. The matching of soil moisture vertical profiles observed under natural conditions in grassy plots and their simulations by a conceptual model is presented. Experimental measurements were performed in a plot located in Central Italy, complete with hydrometeorological sensors specifically set up and equipped with a time domain reflectometry system providing the water content, θe(z, t). A conceptual model framework earlier proposed for two‐layered soil vertical profiles was modified and adopted for simulations. The changes concern the incorporation of evapotranspiration, the reduction of the original model for applications also to homogeneous soil vertical profiles, and a correction for the differences existing between assumed and observed initial moisture contents. In the model calibration, it was found that the effects of vegetation could be represented adequately by a fictitious soil vertical profile with a more permeable upper layer of saturated hydraulic conductivity, Ks, independent of time. Then, for the validation events, the model simulations in the stages of both infiltration and redistribution/evapotranspiration reproduced appropriately θe(z, t) with typical values of root mean square error in the range 0.0017–0.0657. Similar results were obtained by applying the modified two‐layered model for simulations of experimental data observed in three other plots located in Northern Italy and Germany. For all four vegetated sites, the two‐layer profile better matched the experimental data than the assumption of a homogeneous profile. Thus, the conceptual approach based on a two‐layered scheme for representing θ(z, t) in soils with vegetation appears to be appropriate for many hydrological applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents some results on the following subjects obtained from in-situ forced vibration tests and earthquake observations. (1) The characteristics of the radiation damping of soil-foundation interaction systems vs. non-dimensional frequency a0 (=ωr/Vs) were experimentally estimated by the equivalent damping ratios hH ( = KH/2KH) and hR ( = KR/2KR), which were defined by complex stiffnesses 1KH (= KH + iKH) and 1KR (= KR + iKR) of soil. The results for hH and hR of base rock were compared with those of soft soil. (2) A comparative study of experimental and theoretical results was made. The theoretical results were obtained from elastic half-space theory. (3) A semi-empirical equation to estimate the equivalent S-wave velocity for the elastic half-space model is proposed here, considering the effects of layered media. (4) Various comparisons of the results of 1 KH, 1 KR, hH and hR of forced vibration tests and earthquake observations were made.  相似文献   

6.
A study on the transient response of a circular cylindrical shell of finite length embedded in a homogeneous, isotropic and linear elastic half-space is presented. The soil-structure system is subjected to suddenly applied explosion waves. The numerical method employed is a combination of the time domain semi-analytical boundary element method used for the semi-infinite soil medium and the finite strip method used for the circular cylindrical shell. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. The dynamic responses at the interface between the soil medium and the structure for every time step are obtained. Numerical examples are presented in detail to demonstrate the use and versatility of the proposed method. The following parameters are found to affect the response: (1) the slenderness ratio of the length over the diameter of the shell, L/D; (2) the relative wall thickness, h/a; (3) the relative stiffness ratio between the shell and the medium, Es/Em; and (4) the incidence angle of the explosion wave, α.  相似文献   

7.
Dynamic elastic moduli like E, μ, K and μ of the foundation rock of a dam have been determined by finding Vp- and Vs-velocities by seismic refraction with a hammer as source. Some parameters such as “fracture frequency” and “rock quality designation” (RQD) of the foundation rock have been derived using “average regression curves” and Vp-velocities. By comparing K/μ with Vp/Vs, a few locations showing weathered conditions have been demarcated. This compares well with RQD values of those locations.  相似文献   

8.

The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.

  相似文献   

9.
Liqiao Liang  Qiang Liu 《水文研究》2014,28(4):1767-1774
Partitioning precipitation (P) between streamflow (Q) and actual evapotranspiration (Ea) on a basin scale is controlled by climate change in combination with catchment characteristics. Fu's formulation of the Budyko framework was used to estimate Q as a function of two meteorological variables, P and potential evaporation (Ep), and one adjustable parameter reflecting characteristics of catchment conditions (ω). Results show that ω reflects the impacts of catchment characteristics on the partitioning of P between Q and Ea for the different water yielding regions. As predicted, Q was more sensitive to P than to comparable changes in Ep for the whole of the Yellow River Basin (YRB), a water‐limited basin, while it was shown to be highly sensitive to changes in P, Ep, and ω in the low water yielding region (LWYR) of the basin, followed by YRB and the high water yielding region of the basin. The high sensitivity of Q to P, Ep, and ω in LWYR indicates that the management of catchments within these zones is critical to the management of overall basin flow, mitigating impacts of climate change on Q. The Budyko framework, incorporating the adjustable parameter ω, outlines interactions between Q, climate, and characteristics specific to different water yielding regions. It also provides a new approach in understanding hydrological process response to climate change. Due to the obscure physical attributes of ω, an explanation of the parameter using soil or vegetation characteristics will aid in the understanding of the eco‐hydrological behaviour of catchments and help to provide more detailed catchment management options for which to mitigate climate change with respect to concerns regarding agricultural water usage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.  相似文献   

11.
An approach to extraction of viscoelastic parameters from seismic data is implemented and succesfully tested. Viscoelastic inversion is performed using adaptive damping factors to control the sensitivity of the viscoelastic parameters in relation to the τ-p seismic data. A priori information is incorporated through the damping factors as standard deviations of the data and of the viscoelastic model parameters. The stability of the inversion process is controlled by the variation of the damping factors as a function of the residual errors and parameter updates at each iteration. Tests on synthetic and real data show that P- and S-wave quality factors, Qp and Qs, in addition to P- and S-wave velocities and density Cp, Cs and p, can be extracted from τ-p seismic information. Singular value decomposition analysis demonstrates that estimated Qp and Qs values are more affected by the presence of data inaccuracies and noise than are those of Cp and p. Cs and Qs are not uniquely recovered due to the limited contribution of P-S converted waves. Knowledge of the viscoelastic parameters is of particular importance in accurately describing petrophysical properties of rocks and pore fluids existing in the subsurface; this is demonstrated with real data from the Gulf of Mexico.  相似文献   

12.
This study aims to realistically simulate the seismic responses of typical highway bridges in California with considerations of soil–structure interaction effects. The p‐y modeling approaches are developed and validated for embankments and pile foundations of bridges. The p‐y approach models the lateral and vertical foundation flexibility with distributed p‐y springs and associated t‐z and q‐z springs. Building upon the existing p‐y models for pile foundations, the study develops the nonlinear p‐y springs for embankments based on nonlinear 2D and 3D continuum finite element analysis under passive loading condition along both longitudinal and transverse directions. Closed‐form expressions are developed for two key parameters, the ultimate resistant force pult and the displacement y50, where 0.5pult is reached, of embankment p‐y models as functions of abutment geometry (wall width and height, embankment fill height, etc.) and soil material properties (wall‐soil friction angle, soil friction angle, and cohesion). In order to account for the kinematic and site responses, depth‐varying ground motions are derived and applied at the free‐end of p‐y springs, which reflects the amplified embankment crest motion. The modeling approach is applied to simulate the seismic responses of the Painter Street Bridge and validated through comparisons with the recorded responses during the 1992 Petrolia earthquake. It is demonstrated that the flexibility and motion amplification at end abutments are the most crucial modeling aspects. The developed p‐y models and the modeling approach can effectively predict the seismic responses of highway bridges. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The behaviour under seismic loading of inclined piles embedded in two idealized soil profiles, a homogeneous and a non-homogenous “Gibson” soil, is analysed with 3D finite elements. Two structures, modeled as single-degree-of-freedom oscillators, are studied: (1) a tall slender superstructure (H st = 12 m) whose crucial loading is the overturning moment, and (2) a short structure (H st = 1 m) whose crucial loading is the shear force. Three simple two-pile group are studied: (a) one comprising a vertical pile and a pile inclined at 25°, (b) one consisting of two piles symmetrically inclined at 25°, and (c) a group of two vertical piles. The influence of key parameters is analysed and non-dimensional diagrams are presented to illustrate the role of raked piles on pile and structure response. It is shown that this role can be beneficial or detrimental depending on a number of factors, including the slenderness of the superstructure and the type of pile-to-cap connection.  相似文献   

14.
FollowingDmitriev (1960) a rigorous theoretical solution for the problem of scattering by a perfectly conducting inclined half-plane buried in a uniform conductive half-space has been obtained for plane wave excitation. The resultant integral equation for the Laplace transform of scattering current in the half-plane is solved numerically by the method of successive approximation. The scattered fields at the surface of the half-space are found by integrating the half-space Green's function over the transform of the scattering current.The effects of depth of burial and inclination, of the half-plane on the scattered fields are studied in detail. An increase in the depth of burial leads to attenuation of the fields. Inclination introduces asymmetry in the field profiles beside affecting its magnitude. Depth of exploration is greater for quadrature component. An interpretation scheme based on a phasor diagram is presented for the VLF-EM method of exploration for rich vein deposits in a conductive terrain.List of symbols x, y, z Space co-ordinates - Half-space conductivity - 0 Free-space permeability - Excitation frequency (angular) - T Time - h Depth of the half-plane - a Inclination of the half-plane - E x x-Directed total electric field - E x p x-Directed primary electric field - E xo p x-Directed primary electric field atz=0 directly over the half-plane - H y y-Component of total magnetic field - H y p y-Component of primary magnetic field - H y0 p y-Component of primary magnetic field atz=0 directly over the half-plane - H z z-Component of total magnetic field - H z p z-Component of primary magnetic field - J x Surface density ofx-directed scattering current - G Green's function - k 0,K Wave numbers - u,u 0,u 1,u 2 Functions - Space co-ordinate - s Variable in transform domain - Variable of integration - Normalized scattering current - Laplace transform of - N Normalized - , 0, 1, 2 Functions - t Variable of integration - Skin depth - H Total magnetic field - H p Primary magnetic field - H 0 p Primary magnetic field atz=0 directly over the half-plane - M,Q,R,S,U,V Functions - N 1,N 2 Functions  相似文献   

15.
A two-dimensional analysis is applied to examine the effect that a sloping bedrock half-space has on the amplification of an anti-plane shear wave. The direct boundary integral equation method is used for the two-dimensional analysis. The particular soil–rock configuration investigated includes a homogeneous soil layer underlain by a sloping rock half-space. The rock half-space dips for a horizontal distance L and then becomes horizontal so that the overlying soil layer has a thickness H that remains constant from this point to infinity. The materials in the soil–rock configuration are considered viscoelastic except in the rock half-space below soil layer thickness H, which is considered elastic. This limitation in damping is due to the correction used for the truncation of the half-space boundary. Four cases are used to study the relationship between rock slope and surface displacement, vertical, 1:2, 1:4, 1:8. Surface displacements are determined for each of these cases for half-space incidence angles of 90, 75, and 60°. To allow for applicability to a wide range of problems, results are determined as a function of dimensionless parameters. In addition, solutions from a one-dimensional analysis are compared with the results of the two-dimensional analysis to establish limits outside of which a one-dimensional analysis suffices.  相似文献   

16.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Empirical prediction of soil erosion has both scientific and practical importance. This investigation tested USLE and USLE‐based procedures to predict bare plot soil loss at the Sparacia area, in Sicily. Event soil loss per unit area, Ae, did not vary appreciably with plot length, λ, because the decrease in runoff with λ was offset by an increase in sediment concentration. Slope steepness, s, had a positive effective on Ae, and this result was associated with a runoff coefficient that did not vary appreciably with s and a sediment concentration generally increasing with s. Plot steepness did not have a statistically detectable effect on the calculations of the soil erodibility factor of both the USLE, K, and the USLE‐M, KUM, models, but a soil‐independent relationship between KUM and K was not found. The erosivity index of the USLE‐MM model performed better than the erosivity index of the Central and Southern Italy model. In conclusion, the importance of an approach allowing soil loss predictions that do not necessarily increase with λ was confirmed together with the usability of already established and largely applied relationships to predict steepness effects. Soil erodibility has to be determined with reference to the specific mathematical scheme and conversion between different schemes seems to need taking into account the soil characteristics. The USLE‐MM shows promise for further developments. The evolutionary concept applied in the development of the USLE should probably be rediscovered to improve development of soil erosion prediction tools. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A tomographic study of the V p and V p/V s structures in the crust and upper mantle beneath the Taiwan region of China is conducted by simultaneous inversion of P and S arrival times. Compared with the previous tomographic results, the spherical finite difference technique is suitable for the strong heterogeneous velocity structure, and may improve the accuracy in the travel time and three-dimensional ray tracing calculations. The V p and V p/V s structures derived from joint inversion and the relocated earthquakes can provide better constraints for analyzing the lateral heterogeneity and deep tectonic characters in the crust and upper mantle. Our tomographic results reveal significant relations between the seismic wavespeed structure and the tectonic characters. In the shallow depth, sedimentary basins and orogen show distinct wavespeed anomalies, with low V p, high V p/V s in basins and high V p, low V p/V s in orogen. As the suture zone of Eurasian Plate and Philippine Sea Plate, Longitudinal Valley is characterized by a significant high V p/V s anomaly extending to the middle-lower crust and upper mantle, which reflects the impact of rock cracking, partial melting, and the presence of fluids. In the northeast Taiwan, the V p, V p/V s anomalies and relocated earthquakes depict the subducting Philippine Sea Plate under the Eurasian Plate. The high V p of oceanic plate and the low V p, high V p/V s atop the subducted oceanic plate extend to 80 km depth. Along the east-west profiles, the thickness of crust reaches 60 km at the east of Central Range with eastward dipping trend, which reveals the eastward subduction of the thickened and deformed crust of the Eurasian continental plate. Supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-234-2), National Basic Research Program of China (Grant No. 2007CB411701), National High Technology Research and Development Program of China (Grant No. 2006AA09A101-0201) and National Natural Science Foundation of China (Grant Nos. 40804016, 40704013)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号