首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of São Luis (2.33°S; 44.21°W; dip latitude 1.3°S), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at São Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above São Luis, whereas the north–south asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4 > 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

2.
This paper reports differences in the occurrence statistics of global positioning system (GPS) L-band scintillations at observational sites located in the inner regions of the northern and southern crests of the equatorial ionization anomaly. Ground-based GPS data acquired at the closed magnetically aligned stations of Manaus (3.1°S; 59.9°W; dip lat. 6.2°N) and Cuiabá (15.5°S; 56.1°W; dip. lat. 6.2°S), Brazil, from December 2001 to February 2007 are used in the analysis. The drift dynamics of Fresnel-scale ionospheric irregularities at the southern station of Cuiabá are also investigated. Only geomagnetically quiet days with the sum of daily Kp < 24 were used in the analysis statistics and in the irregularity drift studies. The results reveal a clear dependence of the scintillation occurrence with the solar activity, but there exists an asymmetry in the percentage of scintillation occurrence between the two stations throughout the period analyzed. The nocturnal occurrence of the scintillations over Cuiabá is predominantly larger than over Manaus, but this scenario seems to change with the decline in the solar activity (mainly during local post-midnight hours). A broad minimum and maximum in the scintillation occurrence appears to occur over both the stations, respectively, during the June solstice (winter) and December solstice (summer) months. The dynamics of the Fresnel-scale irregularities, as investigated from the estimations of the mean zonal drift velocities, reveals that the amplitude of the eastward drifts tends to reduce with the decline in the solar activity. The magnitude of the zonal drift velocities during the December solstice months is larger than during the equinoxes, with the differences being more pronounced at solar maximum years. Other relevant aspects of the observations, with complementary data from a low-latitude ionospheric model, are highlighted and discussed.  相似文献   

3.
According to frequent five-minute vertical sounding of the ionosphere in Almaty (76°55′ E, 43°15′ N) conducted in 2000–2014, the rate of occurrence of nighttime enhancements of the electron concentration at the F2-layer maximum is analyzed, the distributions of enhancement durations are obtained, and the parameters of several very large enhancements recorded at the same time in Irkutsk and Almaty are compared. During the analyzed period, 2272 observation sessions were carried out. In 1430 sessions NmF2 enhancement was observed. The high probabilities of enhancement formation (up to 90%) in January, February, November and December are distribution features that are identical for high and low solar activity. In addition, a rapid decrease in the probability from February to March and smooth increase from September to December occurs in the same manner. High solar activity is characterized by a distinct maximum frequency in the summer months, whereas low activity is characterized by a minimum frequency. The seasonal dependence of distributions of enhancement durations is shown: durations are distributed over a wide range in the autumn–winter season and in a narrow range in the spring–summer season.  相似文献   

4.
The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength Bmax, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters Bmean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.  相似文献   

5.
We apply detrended fluctuation analysis (DFA) on fluxgate and search-coil data in ULF range (scales 10–90 s or 0.1–0.011 Hz) for the months January–April 2009 available from the South European GeoMagnetic Array stations: Castello Tesino (CST), Ranchio (RNC), and L’Aquila (AQU) in Italy; Nagycenk (NCK) in Hungary; and Panagyuriste (PAG) in Bulgaria. DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of non-stationarities. The H and Z magnetic field components at night hours (00-03 UT, 01–04 LT) and their variations at the stations CST, AQU, NCK, and PAG have been examined and their scaling characteristics are analyzed depending on geomagnetic and local conditions. As expected, the scaling exponents are found to increase when the K p index increases, indicating a good correlation with geomagnetic activity. The scaling exponent reveals also local changes (at L’Aquila), which include an increase for the Z (vertical) component, followed by a considerable decrease for the X (horizontal) component in the midst of February 2009. Attempts are made to explain this unique feature with artificial and/or natural sources including the enhanced earthquake activity in the months January–April 2009 at the L’Aquila district.  相似文献   

6.
Using the data of the ionospheric vertical sounding in Almaty, the response of various parameters of the nighttime F layer to the passage of an atmospheric gravity wave, generated during the large magnetic storm on July 24–25, 2004, is studied. The analysis of the phase relations between the variations in the electron density at the F layer maximum (NmF), the layer maximum height (hmF), and the layer half-thickness showed that they are determined by the slope of the wave phase front. It is shown that the half-thickness of the layer changes in anti-phase with the variations in NmF2. The known fact that the amplitudes of variations in the critical frequencies of the F 2 layer are smaller than the amplitudes of electron density variations at fixed heights is explained.  相似文献   

7.
Ionospheric disturbances at heights of the F 2 layer maximum during the strong magnetic storm (the minimum value of the Dst index was ?149 nT) and the magnetic superstorm (the minimum value of the Dst index was ?387 nT) have been compared based on the data from two pairs of magnetically conjugate midlatitude ground stations for ionospheric vertical sounding. The storms began on March 19, 2001, and March 31, 2001, respectively. It has been obtained that almost only negative ionospheric disturbances were observed in the Northern and Southern hemispheres in both cases. The maximum effect in changes in the layer critical frequency (foF2) in both hemispheres has a time delay relative to the moment of the maximum disturbance in the Dst index on the order of 3–4 h for the strong storm and about 1 h for the superstorm. The disturbed variations in the foF2 critical frequency in different hemispheres correlate well with each other in the plane of one magnetic meridian, but the correlation substantially weakens at different magnetic longitudes. An assumption is made that the revealed features of the behavior of the disturbed midlatitude ionospheric F 2 layer are caused by the complex character of the thermospheric response to the energy release in the auroral zone during the considered magnetic storms.  相似文献   

8.
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (H) at magnetometers near the equator and about 6–9° away from the equator, ΔH, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (F10.7=80, 140 and 200 units) variations of ΔH in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of ΔH to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of ΔH and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.  相似文献   

9.
The influence of the interplanetary magnetic field (IMF) on the occurrence of sporadic E (Es)-layers in the southern polar cap ionosphere has been investigated. We statistically analysed ionogram and Doppler velocity observations made using a HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E; 81°S magnetic latitude) during the two summer campaign intervals 1 January to 18 February, and 1 November to 31 December 1997. The ionogram and Doppler velocity measurements were used to determine the Es-occurrence and electric field vectors (assuming E×B/B2 drift), respectively. Concurrent IMF data were obtained from measurements made on board the Wind spacecraft. First, the gross properties of the IMF dependence of Es-formation were obtained: the occurrence rate was higher for negative By and/or positive Bz, and lower for positive By and/or negative Bz. To reconcile these gross properties with the electric field theory of Es-layer formation, the detailed diurnal variation of both Es-occurrence and the ionospheric electric field were obtained for different orientations of the IMF. The main statistical results are that: (1) the By component mainly controls the occurrence of the midnight Es-layers through its influence on the corresponding South West electric field; and (2) the Bz component mainly controls the occurrence of the evening Es-layers. However, the change in the occurrence rate for evening Es-layers was not related to the strength of the associated North West and North East electric fields. The total occurrence of Es-layers depended more on By than on Bz, owing to the dominance of By-controlled midnight Es-layers in the occurrence distribution. Nevertheless, the dependence of Es-occurrence on Bz was important. We suggest that the increase in Es-occurrence for positive Bz might be explained by the intermittent production of lower F-region ionisation by polar showers and squalls, which also increase in frequency and intensity for positive Bz. The importance of metallic ion transport within the ionosphere is also considered.  相似文献   

10.
The measurements of the critical frequencies of the ionospheric F2 layer based on vertical radiosounding, which was performed with a CADI digital ionosonde at the Voeykovo magnetic–ionospheric observatory in February 2013, have been considered. The observations have been compared with the upper atmosphere numerical model (UAM) data for three days that differ in the amplitude and the character of solar and magnetic activity and correspond to quiet and moderately disturbed states of the ionosphere. The work was performed in order to improve the methods for determining the ionospheric state by vertical sounding ionograms. The time variations in the F2 layer critical frequency, electric field vector zonal component, and thermospheric wind velocity meridional component have been analyzed. Calculations were performed with three UAM variants. The UAM version providing the best agreement with the CADI ionosonde data was the version in which the neutral temperature, neutral composition, and pressure gradients are calculated according to the MSIS empirical model and the horizontal neutral wind velocity is determined by the equation of motion with pressure gradients from MSIS. The calculated values corresponded to the measurements, except those for the evening, because the electron density at the ionospheric F2 layer maximum depends more strongly on electric fields and thermospheric wind velocities during this period. Thus, the indicated UAM version with the above limitations can be used to determine the state of the subauroral ionosphere.  相似文献   

11.
The structure and dynamics of the ionosphere and plasmasphere at high solar activity under quiet geomagnetic conditions of June 2–3, 1979, and January 5–6, 1980, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The plasma drift velocity, determined by comparing the calculated and measured heights of the F 2 layer maximum (hmF2), and the correction of [N2] and [O2], found in the NRLMSISE-00 model, make it possible to coordinate the electron densities (NmF2) calculated at the hmF2 height and the measured anomalous variations in NmF2 over the Argentine Islands ionosonde as well as the calculated and measured NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that, if the interference of the diffusion velocities of O+(4S) and H+ ions is taken into account, the additional heating of plasmaspheric electrons leads to an increase in the flux of O+(4S) ions from the topside ionosphere to lower F 2 layer altitudes, as a result of which an anomalous nighttime increase in NmF2 6, observed on January 6, 1980, over Millstone Hill station, is mainly produced. The second component of the formation of anomalous night-time NmF2 is the plasma drift along the magnetic field caused by the neutral wind, which shifts O+(4S) ions to higher altitudes where the recombination rate of O+(4S) with N2 and O2 is lower and slows down a decrease in NmF2 in the course of time. It has been shown that the influence of electronically excited O+ ions and vibrationally excited N2 and O2 molecules on electron density (N e ) considerably differs under winter and summer conditions. This difference forms significant part of the winter anomaly in N e at heights of the F 2 region and topside ionosphere over Millstone Hill station.  相似文献   

12.
The magnetic properties of the shadow of magnetic-related leading and trailing spots (those connected by forces lines of magnetic field, which are calculated from a field in potential approximation) are studied in this work. The correlations are established between individual characteristics of the field in the spot shadow and these characteristics from the shadow area S for spot pairs, for which the minimum angle between the measured vector of magnetic induction B in the shadow of the leading (L) spot and positive normal to the solar surface is lower than in the trailing (F) spot (αmin-L < αmin-F) and, vice versa, when αmin-L > αmin-F. It is shown that the αmin-L(SL), αmin-F(SF), Bmax-L(SL) and Bmax-F(SF) correlations are similar behaviorally and quantitatively for two groups of spots with different asymmetries of a magnetically connected field (Bmax-L, F is the maximum of magnetic induction in the shadow of leading and trailing spots). The correlation between the average angles within the spot shadow 〈αL, F〉 and the area of the spot shadow SL, F and between the average value of magnetic induction in the spot shadow 〈BL, F〉 differ in two cases. In most studied spot pairs, the leading spot is closer to the dividing line of polarity between the spots rather than the trailing one.  相似文献   

13.
We present a study of peculiarities of the winter nighttime maximum in the critical frequencies f 0 F2 at mid-latitudes of the Asian region. The data of stations located at different longitudes and close latitudes have been used in the analysis: Novosibirsk (54.8°N, 83.2°E), Irkutsk (52.5°N, 104.0°E), and Khabarovsk (48.5°N, 135.1°E). It has been found that the nighttime maximum in f 0 F2 is observed after midnight (∼0200–0400 LT) and is a stable feature of the quiet ionosphere from the middle of October to the middle of March at low solar activity (SA) at all analyzed stations. This interval decreases with increasing SA. The difference between the maximal and minimal f 0 F2 values in nighttime hours is the largest in December–January, and its amplitude is almost independent of SA. Variations in the critical frequency of the h m F2 layer are inversely related to those in the height of the maximum. We have studied periods when the difference between the daytime and nighttime values of f 0 F2 is less than 2 MHz. The intervals of observations of such events at different longitudes do not coincide. No dependence of the winter nighttime maximum amplitude on magnetic activity has been found.  相似文献   

14.
Nighttime F2 layer height decreases have been examined for post-sunset intervals at the equatorial station, Huancayo. The analyses involved mainly Rz max years, (1957–1960), although Rz min years (1974–1977) were also used. The data were obtained from tabulations of the ionogram parameters h'F, fF2 and fEs. The height reductions are delayed by more than 7 h following geomagnetic substorm onsets for locations at longitudes to the east. The reduced occurrence of spread-F and fEs enhancements is found to be associated. These enhancements are also recorded at the European station, Dourbes about 4.5 h before the Huancayo enhancements. It is proposed that an LS-TID which propagates in the 80 km sound channel may be involved. Also, the experimental evidence suggests that the westward propagation of the LS-TIDs allows equatorial disturbances to occur at local times (before midnight) which are similar to the times when the LS-TIDs are generated.  相似文献   

15.
On July 29, 2021, a large earthquake of MW8.2 occurred south of the Alaska Peninsula. To investigate the spatial-temporal changes of crustal stress in the earthquake-stricken area before this event, we selected 159 earthquakes of 4.7 ≤ MW ≤ 6.9 that occurred in the epicentral region and its surroundings between January 1980 and June 2021 to study the temporal variation and spatial distribution of their apparent stress. In addition, we analyzed the correlation between seismic activities and Earth’s rotation and explored the seismogenic process of this earthquake. The crustal stress rose from January 2008 to December 2016. This period was followed by a sub-instability stage from January 2017 until the occurrence of the MW8.2 earthquake. The average rate of apparent stress change in the first five years of the stress increase period was roughly 2.3 times that in the last four years. The lateral distribution of the apparent stress shows that the areas with apparent stress greater than 1.0 MPa exhibited an expanding trend during the seismogenic process. The maximum apparent stress was located at the earthquake epicenter during the last four years. The distribution of the apparent stress in the E-W vertical cross section revealed that an apparent stress gap formed around the hypocenter during the first five years of the stress increase period, surrounded by areas of relatively high apparent stress. After the Alaska earthquake, most parts of this gap were filled in by aftershocks. The seismic activities during the sub-instability stage exhibited a significant correlation with Earth’s rotation.  相似文献   

16.
Results of fractal analysis of ultra-low-frequency (ULF) emissions registered at a low-latitude observatory, Guam (geomagnetic coordinates Φm=9°N, Λm=225°), and at a high-latitude drifting station, North Pole-30 (Φm=75°N, Λm=172°), are presented. The first set of data covers a long period of observations (20 months) including the strong (Ms=8) Guam earthquake of 8 August 1993. The second set of data covers a short period of observations (21 days) in April 1989 during the preparation phase of the big magnetic storm of 25 April 1989. Definite peculiarities in the behavior of ULF emission scaling (fractal) characteristics have been found, which are discussed on the basis of the self-organized criticality concept. The principal common peculiarity for magnetosphere–ionosphere and lithosphere systems is detection of flicker noise (β∼1, D0∼2) in a certain frequency range on the preparation phase of strong magnetospheric and seismic events.  相似文献   

17.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003–2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (F GEP) and ecosystem respiration (R eco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting F GEP and R eco in 2003, whereas soil moisture imposed a significant influence on both R eco and F GEP in 2004. Under wet conditions, R eco showed an exponentially increasing trend with temperature (Q 10 = 2.0), but an apparent reduction in the value of R eco and its temperature sensitivity were observed during the periods of water stress (Q 10=1.6). Both heat and water stress can cause decrease in F GEP. The seasonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m?2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

18.
Summary The lunar daily (L) and lunar monthly (M) variations in horizontal magnetic field (H), maximum electron density (N max ), height of peak ionisation (h max ), semi-thickness (y m ) of theF 2 layer and total electron content (N t ) at Huancayo for the period January 1960 to December 1961 are described. The lunar tidal variations inh max follow sympathetically the variations inH such that an increase of magnetic field causes the raising of height of peak ionisation. Lunar tides inN max are opposite in phase to that ofh max with a delay of about 1–2 hours, suggesting that an increase of height causes a decrease in maximum electron density. The lunar tides in semi-thickness are very similar in phase to that inh max . The lunar tidal effects in any of the parameters are largest inD-months and least inJ-months. The amplitude of lunar tides in maximum electron density seems to increase with increasing height whereas the phase seems to be constant with height. It is concluded that lunar tides in the ionospheric parameters at magnetic equator are greatly controlled by the corresponding geomagnetic variations.Presented at the Third International Symposium on Equatorial Aeronomy, Ahmedabad, 3–10 February 1969.  相似文献   

19.
The M2 (12.42-h period) magnetic field variation present at night in the United Kingdom can be interpreted in terms of sea tides, the main contribution being from the Atlantic Ocean. Osgood et al. (1970) observed a difference between the M2-variations in the total magnetic field (F) variations at Sidmouth (0.8 km from the coast) and Exeter (16 km from the coast) of amplitude 0.8 γ, which must be due to local effects. Analysis of the phase of this difference between Exeter and Sidmouth has shown that it cannot be due entirely to tidally induced electric current systems confined to the English Channel. Measurements with two three-component magnetometers have shown that the night-time variations in the north-south (H) component of 12.42-h period are significantly different at Sidmouth and Exeter. The difference in H is in phase with the expected electric potential difference across Devon due to the difference in the phases of the sea tides in the English Channel and the Bristol Channel. The results of Donato and Rosser (1973) on micropulsations suggest the existence of a region of high conductivity under Exeter. If this connects the English Channel to the Bristol Channel, a current will flow beneath Exeter giving a difference in the M2-variations in H at Exeter and Sidmouth. This difference in H dominates the M2-variations in the total magnetic field (F) variations at Exeter and Sidmouth measured by Osgood et al. (1970).  相似文献   

20.
The specific features of radio propagation from the viewpoint of physics of processes in the polar ionosphere have been studied in the present work based on the oblique-incidence sounding of the ionosphere (OISI) on the St. Petersburg-Belyi Nos (Amderma) polar radio path during substorm activity in the summer months of 1997. The OISI data were used to find the following parameters: maximum observable frequency during signal reflection from the E s layer (EsMOF), maximum observable frequency during signal reflection from the F 2 layer (F2MOF), and lowest observable frequencies for the E s and F 2 layers (EsLOF and F2LOF, respectively). Absolute MOF and LOF values were also found out. The total number of received rays was determined in addition to the above parameters. Isolated substorms against a quiet background were selected for the studies. These substorms resulted in substantial changes in the ionospheric radio channel and propagation conditions along the path. The results of the studies are as follows. (1) The following distinct regularities in the HF propagation along the path have been determined: (i) the range of operational frequencies Δ = MOF-LOF becomes substantially narrower during substorms; (ii) the radio propagation mechanism changes during a substorm; (iii) during substorms, the auroral absorption substantially and partially increases in the course of the expansion and recovery phases, respectively; (iv) multiray effect sharply increases at the beginning of the substorm active phase (T 0). (2) The indications of changes in the radio propagation parameters, which can possibly be used to predict the beginning of substorm development, have been formulated. (3) All revealed regularities in the HF propagation in the auroral zone have been explained from the geophysical viewpoint. It is important to use these regularities to organize radio communication and to solve the problems within the scope of the Space Weather Program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号