首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分七个方面扼要评述我国太阳大气和行星际动力学领域的近期成果:(1)耀斑的储能和释能;(2)日冕物质抛射;(3)行星际准定态结构;(4)行星际扰动和激波传播;(5)太阳风中的阿尔文起伏;(6)太阳宇宙线的传播;(7)磁流体(MHD)计算方法设计.  相似文献   

2.
High-performance computational models are required to make the real-time or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolution of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements from spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.  相似文献   

3.
The solar wind–magnetosphere coupled system is characterized by dynamical processes. Recent works have shown that nonlinear couplings and turbulence might play a key role in the study of solar wind–magnetosphere interaction processes.Within this framework, this study presents a statistical analysis aimed to investigate the relationship between solar wind MHD turbulence and geomagnetic activity at high and low latitudes as measured by the AE and SYM-H indices, respectively. This analysis has been performed for different phases of solar cycle 23. The state of turbulence was characterized by means of 2-D histograms of the normalized cross-helicity and the normalized residual energy. The geomagnetic response was then studied in relation to those histograms.The results found clearly show that, from a statistical point of view, solar cycle 23 is somewhat peculiar. Indeed, good Alfvénic correlations are found unexpectedly even during solar activity maximum. This fact has implications on the geomagnetic response as well since a statistical relationship is found between Alfvénic fluctuations and auroral activity. Conversely, solar wind turbulence does not seem to play a relevant role in the geomagnetic response at low latitudes.  相似文献   

4.
It has been recognized that there are three basic physical agents, namely (i) electromagnetic radiation, (ii) high-energy charged particles, and (iii) enhanced solar wind, resulting from solar activity, which affect the near-Earth and terrestrial environment. In this paper, we restrict our discussion to the subject of the enhanced solar wind. In this context, it is well-known that the most appropriate tool to investigate the generation and propagation of solar disturbances is magnetohydrodynamic (MHD) theory. The most recent progress during the period of the Solar Terrestrial Energy Program (STEP) in these aspects will be presented. In particular, the induced transport of momentum and energy, by coronal mass ejections (CMEs), from the solar surface to the Earths environment (i.e. at 1 AU) will be illustrated by using a self-consistent MHD model of streamer and flux-rope interactions.  相似文献   

5.
行星际背景太阳风的三维MHD数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
杨子才  沈芳  杨易  冯学尚 《地球物理学报》2018,61(11):4337-4347
近地空间的太阳风参数预报具有重要的科学研究意义和实际应用价值,三维磁流体力学(MHD)数值模拟是太阳风参数预报的重要手段.本文建立了一套基于经验模型的三维MHD数值模型.模型的内边界设置在0.1天文单位(AU)处,在六片网格系统下利用TVD Lax-Friedrich格式求解理想MHD方程组,采用扩散法消除磁场的散度.模型以GONG的观测磁图作为输入数据,利用经验模型并结合卫星观测特征确定内边界条件.边界条件中保留了6个可调参数,以便适当调整参数使其方便适合模拟不同太阳活动期的太阳风.利用该模型分别模拟了2007年和2016年的背景太阳风,得到了太阳风速度、密度、温度和磁场强度,这些参数与ACE/WIND卫星观测符合较好.  相似文献   

6.
以观测到的光球视向磁场、K-日冕亮度作为输入,以相应的统计结果为约束条件,利用磁流体力学方程组,给出了等离子体及磁场各参数在源表面上的二维分布.其结果与同期的卫星观测数据和已有的统计结果相比较,显示出相当程度的一致性.  相似文献   

7.
王明  吕建永  李刚 《地球物理学报》2014,57(11):3804-3811
利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1) 在北向行星际磁场较大(Bz≥5 nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2) 太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3) 最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.  相似文献   

8.
The spatial structure of intensive Pc5 pulsations of the geomagnetic field and riometer absorption during the recovery phase of a strong magnetic storm that occurred on October 31, 2003, have been considered in detail. The global structure of disturbances has been analyzed based on a global network of magnetometers and riometers supplemented by the data of magnotometers and particle detectors on geostationary satellites GOES and LANL. The local spatial structure was studied by the data of a regional network of Finland vertical riometers and the stations at the IMAGE magnetic network. Quasiperiodic variations in the magnetic field and riometer absorption are generally similar and have a close frequency composition; nevertheless, their local spatial structures are different, as a result of which the concept that riometer absorption pulsations represent a purely modulation process is doubtful. It is assumed that the observed variations are oscillations of two related systems: the magnetospheric MHD waveguide/resonator and systems including cyclotron noise and electrons. Geomagnetic Pc5 oscillations during the recovery phase of a strong magnetic storm supposedly result from the generation of the magnetospheric waveguide on magnetospheric flanks. An analysis of azimuthal propagation phase velocities indicates that these oscillations depend on intramagnetospheric parameters rather than on the solar wind velocity. The magnetospheric waveguide is in a metastable state when solar wind velocities are high, and the quasiperiodic fluctuations of the solar wind pressure stimulate the excitation of the waveguide.  相似文献   

9.
The properties of turbulent fluctuations of the solar wind plasma near the interplanetary shock observed at September 12, 2014 by the BMSW instrument are considered. The spectra of the density fluctuations in the solar wind and their statistical characteristics up-and downstream of the shock front are analyzed. They are compared with each other and with characteristics corresponding to different turbulence models. It is shown that the spectral and statistical characteristics of the density fluctuations in the solar wind conserve their basic properties after the arrival of an interplanetary shock. Intermittency is observed both before and after the front, but its level increases on average in the second case. In both regions, the scaling of the structure functions of the density fluctuations in the solar wind differ from the scaling of the classical Kolmogorov model and can be described by the log-Poisson turbulence model. Parameterization of the scaling of the structure functions revealed the presence of filamentary structures in the solar wind plasma, which provide the density intermittency in the studied space regions.  相似文献   

10.
R. P. Kane 《Annales Geophysicae》1997,15(12):1581-1594
Data for geomagnetic activity index aa for 1868–1994 were subjected to spectral analysis for 12 intervals each of 11 consecutive years. In each interval, QBO and QTO (quasi-biennial and quasi-triennial oscillations) were observed at ∼ 2.00, 2.15, 2.40, 2.70 y and ∼ 3.20, 3.40 y, but not all in all intervals. These fluctuations are absent near (2–3 y before and after) the sunspot minima and are present only as 2 or 3 peaks in aa indices, one near or before the sunspot maximum and the other (one or two, generally the larger ones) in the declining phase of the sunspot cycle. Comparison with the solar wind (1965 onwards) showed a fairly good match, indicating that the aa variations were mostly due to similar variations in the solar wind, which must have their origin in solar physical processes. A few aa variations did not match with solar wind. When compared with terrestrial phenomena, no match was found with stratospheric low-latitude zonal wind QBO; but some QTO in aa matched QTO in ENSO (El Nino/ Southern Oscillation). This may or may not be a chance coincidence and needs further exploration.  相似文献   

11.
The behavior of correlation tensors of fluctuations in the solar wind magnetic field and velocity is studied during different phases of a solar cycle on the basis of a 45-year measurement series of solar wind parameters. It is found that the orientation of fluctuations in the magnetic field and velocity is approximately axisymmetric relative to the direction of a local magnetic field during high solar activity. This symmetry is violated significantly during periods of low solar activity, and deviations from the symmetry are regular and oppositely directed during minima of even and odd 11-year cycles, which is probably connected with variations in the orientation of the Sun??s magnetic field. The dependence of the power of fluctuations on the local magnetic field direction reveals significant deviations from local symmetry during all phases of a solar cycle, especially for velocity fluctuations.  相似文献   

12.
E. Marsch  C. Y. Tu 《Annales Geophysicae》1994,12(12):1127-1138
The probability distributions of field differences x()=x(t+)-x(t), where the variable x(t) may denote any solar wind scalar field or vector field component at time t, have been calculated from time series of Helios data obtained in 1976 at heliocentric distances near 0.3 AU. It is found that for comparatively long time lag , ranging from a few hours to 1 day, the differences are normally distributed according to a Gaussian. For shorter time lags, of less than ten minutes, significant changes in shape are observed. The distributions are often spikier and narrower than the equivalent Gaussian distribution with the same standard deviation, and they are enhanced for large, reduced for intermediate and enhanced for very small values of x. This result is in accordance with fluid observations and numerical simulations. Hence statistical properties are dominated at small scale by large fluctuation amplitudes that are sparsely distributed, which is direct evidence for spatial intermittency of the fluctuations. This is in agreement with results from earlier analyses of the structure functions of x. The non-Gaussian features are differently developed for the various types of fluctuations. The relevance of these observations to the interpretation and understanding of the nature of solar wind magnetohydrodynamic (MHD) turbulence is pointed out, and contact is made with existing theoretical concepts of intermittency in fluid turbulence.  相似文献   

13.
Pc3 geomagnetic field fluctuations detected at low latitude (L’Aquila, Italy) during the passage of a high velocity solar wind stream, characterized by variable interplanetary magnetic field conditions, are analyzed. Higher frequency resonant fluctuations and lower frequency phenomena are simultaneously observed; the intermittent appearance and the variable frequency of the longer period modes can be well interpreted in terms of the variable IMF elements; moreover their polarization characteristics are consistent with an origin related to external waves propagating in antisunward direction. A comparison with simultaneous observations performed at Terra Nova Bay (Antarctica) provides additional evidence for a clear relationship between the IMF and Pc3 pulsations also at very high latitudes.  相似文献   

14.
Summary MHD vortex flow near the heliomagnetic equatorial plane in the outer heliosphere is studied. The possibility of spiral vortex tubes existing on both sides of the equatorial plane is shown. A structure of this type with the scale of the order of several astronomical units can be formed during the solar minimum when the solar wind velocity has a distinct latitudinal dependence with a minimum near the equatorial plane. Another cause of this vortex structure can be the presence of inhomogeneities of the solar wind in the inner heliosphere.  相似文献   

15.
The magnetic field behavior in the magnetosheath, when the IMF and the solar wind velocity are almost collinear, has been analyzed based on the perturbation method. Magnetic disturbances are considered against a background of the stationary MHD solar wind flow around the magnetosphere when the magnetic field and the solar wind velocity are strictly collinear. It has been indicated that the angle between the magnetic field and velocity vectors increases considerably in a relatively thin layer near the magnetopause. The angle rise factor profiles have been determined for different distances from the subsolar point. The thickness of the layer, where the angle reaches values of about unity and more, has been estimated. It is important to take this layer into account when the magnetopause stability with respect to Kelvin-Helmholtz waves is analyzed.  相似文献   

16.
利用HeliosA,B飞船1974年至1980年的太阳风探测资料,分析了不同速度间隔太阳风质子温度径向变化指数在太阳不同活动期的变化,以及不同太阳活动期间内日球行星际激波强度分布的变化.结果指出,在0.3-1.0AU区间行星际激波可能是太阳风加热的一个重要因素,这一因素在太阳活动高年可能起着主要的作用.激波MHD数值模拟也从量的方面表明激波加热太阳风的有效性.  相似文献   

17.
Magnetohydrodynamic compressive fluctuations of the interplanetary plasma in the region from 0.3 to 1 AU have been characterized in terms of their polytropic index. Following Chandrasekhar’s approach to polytropic fluids, this index has been determined through a fit of the observed variations of density and temperature. At least three different classes of fluctuations have been identified: (1) variations at constant thermal pressure, in low-speed solar wind and without a significant dependence on distance, (2) adiabatic variations, mainly close to 1 AU and without a relevant dependence on wind speed, and (3) variations at nearly constant density, in fast wind close to 0.3 AU. Variations at constant thermal pressure are probably a subset of the ensemble of total-pressure balanced structures, corresponding to cases in which the magnetic field magnitude does not vary appreciably throughout the structure. In this case the pressure equilibrium has to be assured by its thermal component only. The variations may be related to small flow-tubes with approximately the same magnetic-field intensity, convected by the wind in conditions of pressure equilibrium. This feature is mainly observed in low-velocity solar wind, in agreement with the magnetic topology (small open flow-tubes emerging through an ensemble of closed structures) expected for the source region of slow wind. Variations of adiabatic type may be related to magnetosonic waves excited by pressure imbalances between contiguous flow-tubes. Such imbalances are probably built up by interactions between wind flows with different speeds in the spiral geometry induced by the solar rotation. This may account for the fact that they are mainly found at a large distance from the sun. Temperature variations at almost constant density are mostly found in fast flows close to the sun. These are the solar wind regions with the best examples of incompressible behaviour. They are characterized by very stable values for particle density and magnetic intensity, and by fluctuations of Alfvénic type. It is likely that temperature fluctuations in these regions are a remnant of thermal features in the low solar atmosphere. In conclusion, the polytropic index appears to be a useful tool to understand the nature of the compressive turbulence in the interplanetary plasma, as far as the frozen-in magnetic field does not play a crucial role.  相似文献   

18.
The collision of a solar wind tangential discontinuity with the bow shock and magnetopause is considered in the scope of an MHD approximation. Using MHD methods of trial calculations and generalized shock polars, it has been indicated that a fast shock refracted into the magnetosheath originates when density increases across a tangential discontinuity and a fast rarefaction wave is generated when density decreases at this discontinuity. It has been indicated that a shock front shift under the action of collisions with a tangential discontinuity is experimentally observed and a fast bow shock can be transformed into a slow shock. Using a specific event as an example, it has been demonstrated that solar wind tangential discontinuity affects the geomagnetic field behavior.  相似文献   

19.
Extended periods of very low geomagnetic activity as described by very quiet intervals (VQI's) occur only at those times when the solar wind velocityV has a generally decreasing trend, i.e., they mainly occur either after the velocity peak of a high speed solar stream has passed the Earth, or at times when the Earth is immersed in a low speed solar plasma provided that the daily mean value ofdV/dt is negative. The VQI's most frequently start whendV/dt<0 anddB Z/dt>0 (B Z is the geocentric solar magnetrospheric-GSMZ-component of the IMF) and end most likely whendV/dt>0 anddB Z/dt<0. The temporal trends of the solar wind (SW) velocity affect the variation of thea p index only when the level of geomagnetic activity is generally low.It is suggested that a gradual expansion or contraction of the magnetosphere, associated with a slow variation of the SW pressure, plays a role in the modification of the reconnection-driven magnetohydrodynamic (MHD) fluctuations in the magnetosphere.  相似文献   

20.
We present a newly developed global magnetohydrodynamic(MHD) model to study the responses of the Earth's magnetosphere to the solar wind. The model is established by using the space-time conservation element and solution element(CESE) method in general curvilinear coordinates on a six-component grid system. As a preliminary study, this paper is to present the model's numerical results of the quasi-steady state and the dynamics of the Earth's magnetosphere under steady solar wind flow with due northward interplanetary magnetic field(IMF). The model results are found to be in good agreement with those published by other numerical magnetospheric models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号