首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Stable isotopic compositions (δ18O and d-excess) from 25 rivers in Thailand were analysed monthly during 2013–2015. Results indicated that monsoon precipitation fundamentally influences the river isotopes. The overland flow supplied from monsoon precipitation and human-altered flow regimes produces considerable isotopic variability. Spatial and temporal variations were observed among four principal geographical regions. The seasonality of monsoon precipitation in mountainous Thailand produced large variations in isotopic compositions because most rainfall occurred during the southwest monsoon, and dry conditions prevailed during the northeast monsoon. The northern and northeastern regions are mountainous, highland areas. Low δ18O values were found in these regions, likely because of altitude effects on precipitation. Conversely, monsoonal precipitation continually supplies rivers in southern Thailand all year round, producing higher and more consistent δ18O values than in the other regions. The Chao Phraya plain in the central region experienced enrichment of δ18O river runoff related to evaporation in irrigation systems. Larger catchment areas and longer residence times resulted in more pronounced evaporation effects, producing lower values of d-excess and local river water line slopes compared with precipitation. The isotopic differences between river waters and precipitation were utilized to determine river recharge elevations and water transit time. The methods presented here can be used to explore hydrological interactions in other tropical river basins.  相似文献   

2.
Recent studies using water‐stable isotopes (δ18O and δ2H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the ‘two water worlds’ (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16‐year‐old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Water is a major limiting factor in desert ecosystems. In order to learn how plants cope with changes in water resources over time and space, it is important to understand plant–water relations in desert region. Using the oxygen isotopic tracing method, our study clarified the seasonal changes in the water use strategies of three co‐occurring desert shrubs. During the 2012 growing season, δ18O values were measured for xylem sap, the soil water in different soil layers between 0 and 300 cm depth and groundwater. Based on the similarities in δ18O values for the soil water in each layer, three potential water sources were identified: shallow soil water, middle soil water and deep soil water. Then we calculated the percentage utilization of potential water sources by each species in each season using the linear mixing model. The results showed that the δ18O values of the three species showed a clear seasonal pattern. Reaumuria songarica used shallow soil water when shallow layer was relatively wet in spring, but mostly took up middle soil water in summer and autumn. Nitraria tangutorum mainly utilized shallow and middle soil water in spring, but mostly absorbed deep soil water in summer and autumn. Tamarix ramosissima utilized the three water sources evenly in spring and primarily relied on deep soil water in summer and autumn. R. songarica and N. tangutorum responded quickly to large rainfall pulses during droughts. Differential root systems of the three species resulted in different seasonal water use strategies when the three competed for water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   

5.
In the present study, a 2‐year dataset on δ18O and δ2H in precipitation is used to investigate hydrometeorologic controls on the isotopic compositions in a temperate maritime climate. Data was collected in Denmark along a transect of Six sampling stations across a landscape with a small topographic gradient and predominant westerly winds. Data showed the local meteoric water line for this region is expressed by the equation δ2H = 7.4δ18O + 5.4‰. A significant trend correlating enriched isotopic values to humidities around 70% during dry season and more depleted isotopic values to humidities around 90% during wet season was derived from the dataset. Temperature was found to only influence the isotopic composition in a secondary way, whereas no significant relationship was obtained for precipitation amount and evapotranspiration. It is suggested that subcloud post‐condensation exchange strongly influences the isotopic composition at the study site. A simple model of evaporation on falling rain was applied with the aim to reproduce observational data and show the potential influence of changing humidity conditions on precipitation compositions. The rather simple model approach did not fully explain the observational data, but it highlights the drastic isotopic changes from a falling raindrop that potentially can occur due to its release into a dryer atmosphere. This study shows that regional conditions and especially humidity can alter the isotopic composition in precipitation substantially even in regions without major topographic and hydrometeorologic gradients.  相似文献   

6.
Riparian cottonwood forests in dry regions of western North America do not typically receive sufficient growing season precipitation to completely support their relatively high transpiration requirements. Water used in transpiration by riparian ecosystems must include alluvial groundwater or water stored in the potentially large reservoir of the unsaturated soil zone. We used the stable oxygen and hydrogen isotope composition of stem xylem water to evaluate water sources used by the dominant riparian cottonwood (Populus spp.) trees and shrubs (Shepherdia argentea and Symphoricarpos occidentalis) in Lethbridge, Alberta, during 3 years of contrasting environmental conditions. Cottonwoods did not exclusively take up alluvial groundwater but made extensive use of water sourced from the unsaturated soil zone. The oxygen and hydrogen isotope compositions of cottonwood stem water did not strongly overlap with those of alluvial groundwater, which were closely associated with the local meteoric water line. Instead, cottonwood stem water δ18O and δ2H values were located below the local meteoric water line, forming a line with a low slope that was indicative of water exposed to evaporative enrichment of heavy isotopes. In addition, cottonwood xylem water isotope compositions had negative values of deuterium excess (d‐excess) and line‐conditioned (deuterium) excess (lc‐excess), both of which provided evidence that water taken up by the cottonwoods had been exposed to fractionation during evaporation. The shrub species had lower values of d‐excess and lc‐excess than had the cottonwood trees due to shallower rooting depths, and the d‐excess values declined during the growing season, as shallow soil water that was taken up by the plants was exposed to increasing, cumulative evaporative enrichment. The apparent differences in functional rooting pattern between cottonwoods and the shrub species, strongly influenced the ratio of net photosynthesis to stomatal conductance (intrinsic water‐use efficiency), as shown by variation among species in the δ13C values of leaf tissue.  相似文献   

7.
Abstract

Stable isotopes are powerful research tools in environmental sciences and their use in ecosystem research is increasing. Stable isotope measurements allow the study of evapotranspiration fluxes, soil evaporation and leaf transpiration phenomena. Soil water and leaf water are the sources of the evapotranspiration that transfers large quantities of water from land to the atmosphere; as a result the isotopic composition of water left in the leaves is modified towards enrichment. Evaporation also changes the isotopic composition of water bodies creating a natural isotopic signal. The isotopic identity of soil water affects the oxygen isotopic signature of leaf and stem water. In this paper we present the isotopic data of bulk leaf water, showing the enrichment in isotopic value of oxygen due to evapotranspiration from leaves in conjunction with the isotopic signal of rainwater and other environmental factors such as humidity and temperature. Results suggest that the variation in the values of δ18O of Eucalyptus citriodora, Dalbergia sissoo, Melia azedarach and Pinus roxburghii is due to the seasonal changes in the δ18O of the source water for plants, i. e. rain. It is further observed that leaf water δ18O values are depleted during the months of July, August and September. This occurs due to the following reasons: (a) the sampling areas receive about 50% of the average annual rain during these months, and (b) rainfalls during these months are isotopically depleted compared with winter rains.

Citation Butt, S., Ali, M., Fazil, M. & Latif, Z. (2010) Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia. Hydrol. Sci. J. 55(5), 844–848.  相似文献   

8.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

9.
Isotopic heterogeneity in soil water has hindered the application of isotope compositions (δ18O and δ2H) in soil water dynamics. This heterogeneity has been suggested to be caused by soil properties such as organic matter (OM) and clay content. However, this is yet to be verified in field soil. We sampled the organic layer (O-horizon soil) with highly decomposed organic material and the A-horizon soil in western Sichuan, China, and equilibrated these samples with vapour created by unconfined labelling water. The relationship between soil properties and isotopic fractionation (εT/U) between unconfined water and the total soil water was used to determine the line-conditioned excess (lc-excess) and source rain of A-horizon field soil by removing the influence of confined water. Equilibration experiments demonstrated a significant isotopic difference between the εT/U levels in the A-horizon and O-horizon soils, indicating that OM plays an important role in isotopic fractionation. In field samples, the lc-excess of the unconfined A-horizon water was, on an average, 2.5‰ higher than that of bulk soil water. The average offsets between the annual rain and the estimated source rain of soil water decreased by 5.0 and 0.5‰ for hydrogen and oxygen after removing the influence of confined water. Isotopic heterogeneity should not be ignored while examining the evaporation of soil water, soil source rain, and hence the recent ‘two water worlds’ hypothesis, which is especially true for cases in which the soils contain high levels of OM.  相似文献   

10.
Stable isotopes in the water molecule (2H or D and 18O), carbon, and nitrogen are useful tracers and integrators of processes in plant ecohydrological systems across scales. Over the last few years, there has been growing interest in regional to continental scale synthesis of stable isotope data with a view to elucidating biogeochemical and ecohydrological patterns. Published datasets from the humid tropics, however, are limited. To be able to contribute to bridging the “data gap” in the humid tropics, here, we publish a relatively novel and unique suite of δ13C, δ15N, δ2H, and δ18O isotope data from three sites across a moisture gradient and contrasting land use in Puerto Rico. Plant tissue (xylem and leaf) samples from two species of mahogany (Swietenia macrophylla and Swietenia mahagoni) and soil samples down to 60 cm in the soil profile were collected in relatively “wet” (July 2012) and “dry” (February 2013) periods at two sites in northeastern (Luquillo) and southwestern (Susua) Puerto Rico. The same sampling suite is also being made available from a highly urbanized site in the capital San Juan. Leaf samples taken in July 2012 and February 2013 were analyzed for δ13C and δ15N; all xylem and bulk soil samples were analyzed for δ2H and δ18O. Soil samples taken in July 2012 were analyzed for δ13C and δ15N. Leaf δ15N and δ13C dataset showed patterns that are possibly associated with site differences. While spatial patterns were also apparent in soil δ15N and δ13C dataset, the positively linear δ15N –δ13C relationship tends to weaken with site moisture. Soil depth and site moisture patterns were also observed in the δ2H and δ18O datasets of bulk soil and xylem samples. The purpose of these datasets is to provide baseline information on soil–plant water (δ2H and δ18O, N = 319), δ13C (N = 272), and δ15N (N = 269) that may be useful in a wide range of research questions from ecohydrological relations to biogeochemical patterns in soils and vegetation.  相似文献   

11.
Here, we studied the isotope characteristics and source contributions of soil water in the permafrost active layer by collecting soil samples in July 2018 in Yangtze River basin. Soil moisture and temperature showed decreasing trends from 0–80 cm, and an increasing trend from 80–100 cm. The value of δ18O and δD first increased and then decreased in the soil profile of 0–100 cm; however, d-excess increased from 0–100 cm. δ18O values became gradually positive from the southwest to northeast of the study area, while d-excess gradually increased from southeast to northwest. The evaporation water line (EL) was δD = 7.56 δ18O + 1.50 (R2 = 0.90, p < 0.01, n = 96). Due to intense solar radiation and evaporation on the Tibetan Plateau, the elevation did not impact the surface soil. The altitude effect of the soil depths of 0–20 cm was not obvious, but the other soil layers had a significant altitude effect. Soil moisture and temperature were closely related to the stable isotopic composition of soil water. The contribution of precipitation to soil water on the sunny slope was 86%, while the contribution of the shady slope was 84%. However, the contribution of ground ice to soil water on sunny slope was 14% and the shady slope was 16%. The contribution of ground ice to soil water increased with increasing altitude on the sunny slope, but the contribution of ground ice to soil water had no obvious trend on the shady slope.  相似文献   

12.
The stable isotopes of hydrogen and oxygen (δ2H and δ18O, respectively) have been widely used to investigate tree water source partitioning. These tracers have shed new light on patterns of tree water use in time and space. However, there are several limiting factors to this methodology (e.g., the difficult assessment of isotope fractionation in trees, and the labor-intensity associated with the collection of significant sample sizes) and the use of isotopes alone has not been enough to provide a mechanistic understanding of source water partitioning. Here, we combine isotope data in xylem and soil water with measurements of tree's physiological information including tree water deficit (TWD), fine root distribution, and soil matric potential, to investigate the mechanism driving tree water source partitioning. We used a 2 m3 lysimeter with willow trees (Salix viminalis) planted within, to conduct a high spatial–temporal resolution experiment. TWD provided an integrated response of plant water status to water supply and demand. The combined isotopic and TWD measurement showed that short-term variation (within days) in source water partitioning is determined mainly by plant hydraulic response to changes in soil matric potential. We observed changes in the relationship between soil matric potential and TWD that are matched by shifts in source water partitioning. Our results show that tree water use is a dynamic process on the time scale of days. These findings demonstrate tree's plasticity to water supply over days can be identified with high-resolution measurements of plant water status. Our results further support that root distribution alone is not an indicator of water uptake dynamics. Overall, we show that combining physiological measurements with traditional isotope tracing can reveal mechanistic insights into plant responses to changing environmental conditions.  相似文献   

13.
Changes in the level of the Yangtze River caused by anthropogenic water regulation have major effects on the hydrological processes and water cycle in surrounding lakes and rivers. In this study, we obtained isotopic evidence of changes in the water cycle of Yangtze River during the two drought years of 2006 and 2013. Isotopic evidence demonstrated that the δ18O and δD levels in Yangtze River exhibited high spatial heterogeneity from the upper to lower reaches, which were controlled by atmospheric precipitation, tributary/lake water mixing, damming regulation, and water temperature. Both the slope and intercept of Yangtze River evaporative line (δD = 7.88 δ18O + 7.96) were slightly higher than those of local meteoric water line of Yangtze River catchment (δD = 7.41 δ18O + 6.01). Most of the river isotopic values were located below the local meteoric water line, thereby implying that the Yangtze River water experienced a certain degree of evaporative enrichment on isotopic compositions of river water. The high fluctuations in the isotopic composition (e.g., deuterium excess [d‐excess]) in the middle to lower reaches during the initial stage of operation for the Three Gorges Dams (2003–2006) were due to heterogeneous isotopic signatures from the upstream water. In contrast to the normal stage (after 2010) characterized by the maximum water level and largest water storage, a relatively small variability in the deuterium excess was found along the middle to lower reaches because of the homogenization of reservoir water with a longer residence time and complete mixing. The effects of water from lakes and tributaries on the isotopic compositions in mainstream water were highlighted because of the high contributions of lakes water (e.g., Dongting Lake and Poyang Lake) efflux to the Yangtze River mainstream, which ranged from 21% to 85% during 2006 and 2013. These findings suggest that the retention and regulation of the Three Gorges Dams has greatly buffered the isotopic variability of the water cycle in the Yangtze catchment, thereby improving our understanding of the complex lake–river interactions along the middle to lower reaches in the future.  相似文献   

14.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The local meteoric water line (LMWL), the functional relationship between locally measured values of δ18O and δ2H in precipitation, represents the isotopic composition of water entering hydrologic systems. The degree to which the LMWL departs from the global meteoric water line (GMWL), moreover, can reveal important information about meteoric sources of water (e.g. oceanic or terrestrial) and atmospheric conditions during transport. Here we characterize the isotopic composition of precipitation within an experimental watershed in the Western US that is subject to large topographic and seasonal gradients in precipitation. Interpreting the hydrometeorologic and spatial controls on precipitation, we constructed a seasonally weighted LMWL for southwestern Idaho that is expressed by the equation δ2H = 7.40 × δ18O ? 2.17. A seasonally weighted LMWL that is based on weighting isotopic concentrations by climatic precipitation volumes is novel, and we argue better represents the significant seasonality of precipitation in the region. The developed LMWL is considerably influenced by the semiarid climate experienced in southwest Idaho, yielding a slope and y‐intercept lower than the GMWL (δ2H = 8 × δ18O + 10). Moderate to strong correlations exist between the isotopic composition of precipitation from individual events and surface meteorologic variables, specifically surface air temperature, relative humidity, and precipitation amount. A strong negative correlation exists between the annual average isotopic composition of precipitation and elevation at individual collection sites, with a lapse rate of ?0.22‰/100 m. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Mass balance studies in forested catchments in the northeastern USA show that S losses via streamwater SO42? exceed measured atmospheric S inputs. Possible sources of the excess S loss include underestimated dry deposition, mineralization of organic S in soils, desorption of soil sulphate, oxidation of recently formed sulphides and mineral weathering. Evaluating the relative contribution of these sources and processes to SO42? export is important to our understanding of S cycling as well as to policy makers in their evaluation of the efficacy of S emission controls. In order to evaluate the potential for mineral weathering contributions to SO42? export, we measured concentration and isotopic composition (δ34S and δ18O) of SO42? in stream water, and concentration and δ34S values of four S fractions in bedrock and soil parent material in catchments of varying geological composition. Geological substrates with low S concentrations were represented by catchments underlain by quartzite and granite, whereas geological substrates with high S concentrations were represented by catchments underlain by sulphidic slate, schist and metavolcanic rocks. Catchments with S‐poor bedrock had stream‐water SO42? concentrations <100 µeq L?1 and isotopic values consistent with those of atmospheric SO42? that had been cycled through the organic soil pool. Catchments with S‐rich bedrock had stream‐water SO42? concentrations ranging from 56 to 229 µeq L?1. Isotopic values deviated from those of SO42? in atmospheric deposition, clearly indicating a mineral weathering source in some cases, whereas in others spatial variability of mineral δ34S values precluded the isotopic detection of a weathering contribution. These results, along with evidence suggesting formation of secondary sulphate minerals in bedrock weathering rinds, indicate that mineral weathering may be an important source of S in the surface waters of some forested catchments in the northeastern USA. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

18.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

19.
Perennial bioenergy crops with deep (>1 m) rooting systems, such as switchgrass (Panicum virgatum L.), are hypothesized to increase carbon storage in deep soil. Deeply rooted plants may also affect soil hydrology by accessing deep soil water for transpiration, which can affect soil water content and infiltration in deep soil layers, thereby affecting groundwater recharge. Using stable H and O isotope (δ2H and δ18O) and 3H values, we studied the soil water conditions at 20–30 cm intervals to depths of 2.4–3.6 m in paired fields of switchgrass and shallow rooted crops at three sites in the southern Great Plains of North America. We found that soil under switchgrass had consistently higher soil water content than nearby soil under shallow-rooted annual crops by a margin of 15%–100%. Soil water content and isotopic depth profiles indicated that hydraulic redistribution of deep soil water by switchgrass roots explained these observed soil water differences. To our knowledge, these are the first observations of hydraulic redistribution in deeply rooted grasses, and complement earlier observations of dynamic soil water fluxes under shallow-rooted grasses. Hydraulic redistribution by switchgrass may be a strategy for drought avoidance, wherein the plant may actively prevent water limitation. This raises the possibility that deeply rooted grasses may be used to passively subsidize soil water to more shallow-rooted species in inter-cropping arrangements.  相似文献   

20.
Mg isotopic composition of carbonate: insight from speleothem formation   总被引:3,自引:0,他引:3  
Simultaneous high-precision measurement of 24Mg, 25Mg and 26Mg isotopic compositions were made by multiple collector inductively coupled mass spectrometry (MC-ICP-MS) relative to the international standard SRM980. Data are presented on low-Mg calcite speleothems and their associated host rocks and waters from four caves, one in the French Alps and three in Israel, covering various climate conditions. In addition, data are presented on three dolostones and three limestones from the Himalaya. The overall variation is 4.13‰ and 2.14‰ in δ26Mg and δ25Mg, respectively. This is 35 times the uncertainty of the measurements and clearly demonstrates that the terrestrial isotopic composition of Mg is not unique. Each speleothem shows a characteristic range of δ26Mg values that are attributed to the isotopic composition of the local water. Differences between the isotopic composition of Mg in the water dripping from stalactites and that of the modern speleothem are interpreted as being due to Mg isotopic fractionation during carbonate precipitation in the temperature range of 4-18°C. The low-Mg calcite is enriched in light isotopes by 1.35‰/AMU and the dependence on temperature has been found to be less than 0.02‰/AMU/°C. Despite various geological settings, the δ26Mg of the studied dolostones is 2.0±1.2‰ higher than the δ26Mg of the limestones. All together, these results suggest a strong mineralogical control and a weak temperature effect on the Mg isotopic composition of carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号