首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于地震剖面解释的构造分析表明,河西走廊西段及邻区发育有许多晚第三纪-第四纪的逆断层与走滑断层. 其主要类型有两种:一是与北祁连逆冲推覆作用有关的南倾逆断层,其走向北西,主要分布于北祁连山东北缘及河西走廊西南部地区;二是与阿尔金断裂活动有关的逆断层与走滑断层,主要分布于红柳峡、宽台山——合黎山地区. 这些断层与新生代始新世末期以来印-藏碰撞的远距离效应有关. 它们于晚第三纪开始活动,主要活动于第四纪时期,而且大多目前仍在活动,属于活动性断层,是河西走廊地区地震的潜发因素. 此外,它们还造成了地层的强烈变形,形成了一系列的地貌阶地和河流的水平错移.   相似文献   

2.
The sinistral strike-slip characteristic of the Altyn Tagh Fault gradually disappears near the Jiuxi Basin at the west end of Hexi Corridor, and the Kuantanshan Fault and the northern marginal fault of Heishan on its east are thrust structures. There are two faults distributed in the north of Kuantanshan, namely, the Taerwan-Chijiaciwo Fault and the Ganxiashan Fault, both are featured with obvious activity. Predecessors thought that the Taerwan-Chijiaciwo Fault is a thrust fault with low movement rate, but there is few detailed study on its horizontal motion. Is there horizontal strike-slip movement in the northern marginal fault of Kuantanshan? This issue has an important significance to further explore the structural transformation mode between the Altyn Tagh strike-slip faults and the northern thrust faults in the north margin of Qilianshan. Using high resolution remote sensing images and field work, such as combining with UAV SfM photogrammetry, the paper studies the strike-slip characteristics of the Taerwan-Chijiaciwo Fault and Ganxiashan Fault on the northern margin of Kuantanshan, and get two preliminary understandings:(1) The northern marginal fault of Kuantanshan is an active right-lateral strike-slip fault with thrust component, the horizontal to vertical dislocation ratio is about 3-4 times. Based on the statistics of dislocation amount of the gullies and terraces along the north marginal Kuantanshan fault, it is preliminarily estimated that the late Pleistocene right-lateral strike-slip rate is about 0.2-0.25 mm/a and the Holocene right-lateral strike-slip rate is about 0.5-1.5 mm/a. (2) The main driving force to the tectonics at the western end of Hexi Corridor, where the northern marginal fault of Kuantanshan locates, comes from the northward extrusion of the Qilian Mountains, which results in the right-lateral strike-slip of the northern marginal fault of Kuananshan and the thrust movement of several faults inside the Jiuxi Basin. The effect of the Altyn Tagh Fault on other tectonic structures is not obvious in this region.  相似文献   

3.
业成之 《地震地质》1990,12(3):275-281
本文依据现今区域水准测量资料及跨断层位移测量资料阐明祁连山北缘断裂带现今活动特点是以近南北—北东向的挤压并兼有右旋走滑的水平活动方式为主,在玉门一张掖段并伴有近似反对称的升降运动,最大垂直形变梯度R为0.2毫米/公里·年左右,跨断层基线测量的缩短速率为0.2—0.5毫米/年。在河西走廊内部,受次级构造运动的影响也存在有局部的隆起、拗陷的升降运动及断裂活动  相似文献   

4.
阿尔金断裂东端的旋转构造及其动力学意义   总被引:3,自引:0,他引:3  
王萍  卢演俦  陈杰 《中国地震》2004,20(2):134-142
在阿尔金主断裂与祁连山北缘断裂的交汇部位,发育一个反时针旋转构造——照壁山旋转构造,它是新构造运动期阿尔金断裂左行走滑运动的结果。结合前人资料,对照壁山旋转构造变形及其发育过程进行了初步分析,认为阿尔金断裂与祁连山北缘断裂的构造转换是通过旋转构造变形来实现的。沿阿尔金断裂一系列旋转构造的存在和青藏高原东北缘旋转构造的发育表明,伴随青藏高原北部物质绕喜马拉雅东构造结的顺时针旋转运动,使旋转构造成为高原北部边缘带转换、吸收构造变形的重要表现形式。  相似文献   

5.
酒西盆地断层活动特征及古地震研究   总被引:21,自引:12,他引:21       下载免费PDF全文
通过室内航片判读和野外调查 ,在酒西盆地发现 3条全新世活动逆掩断层 ,它们全新世以来的垂直活动速率都很接近 ,为 0 18~ 0 2 5mm/a。通过探槽揭露出的 3条断层全新世以来各发生两次古地震事件。根据探槽揭露的古地震年代及断层活动所形成的微地貌特征分析 ,阴洼山断层是独立活动的 ;北大河断层和新民堡断层上的古地震事件在时间上可能非常接近 ,具有丛集特征 ,或者是一次地震事件分别破裂这两条断层 ,但目前的测年手段还无法区别它们是一次破裂事件形成还是时间上非常接近的两次事件所形成的  相似文献   

6.
The Yarlung Tsangpo Grand Canyon region is located in the frontal zone of the eastern Himalayan syntaxis, where neo-tectonics and seismicity are intensive and closely related to each other. In the region, two sets of fault structures have developed, striking NNE-NE and NWW-NW, respectively. Investigation shows that they differ markedly in terms of scope, property, active times and intensity. The NWW-NW trending faults are large in size, and most are thrust and thrust strike-slip faults, formed in earlier times. The NEE-NE-strike faults are relatively small in size individually, with concentrated distribution, constituting the NNE-trending shear extensional fault zone, which is relatively younger with evident late Quaternary activities. Strong earthquakes occur mainly in the areas or zones of intensive differential movement of the Himalayas, e.g. along the deep and large fault zones around the crustal blocks. Most earthquakes of M≥7.0 are closely related to tectonics, where large-scale Holocene active faults are distributed with complicated fault geometry, or the faults of multiple directions intersect. Among them, earthquakes of M≥7.5 have occurred on the NW and NE-trending faults with a greater strike-slip component in the fault tectonic zones.  相似文献   

7.
运用地质地貌调查、地球物理勘探和年代测定等方法,对张家口—宣化盆地的四条主要断裂(张家口断裂、万全断裂、洗马林—水泉断裂和洋河断裂)的空间展布特征和活动性进行分析和研究,获得其活动时代、活动速率等参数。研究表明:上述断裂第四纪期间持续活动,以脆性变形为特征;总体上NW向断裂以高角度的正(或逆)倾滑断层为主,NE或NEE向的断裂以高角度的正断层为主;盆地内活动断裂总体来说活动强烈,多处可见断裂正断运动及左旋走滑运动的地质剖面,早更新世以来单条断层的平均垂直活动速率大于0.07~0.30mm/a,总垂直活动速率可能达到1.33mm/a。  相似文献   

8.
龙门山北部陕甘川交界三角构造区断裂活动特征研究   总被引:2,自引:0,他引:2  
龙门山北部3条不同走向的断裂带所围限的三角地区是我国陕甘川交界地区研究地震活动的重要场所.通过对区内秦岭南缘断裂、 平武—青川断裂、 岷江断裂及虎牙断裂活动特征研究和活动时代分析认为: 秦岭南缘断裂, 包括迭部—舟曲断裂、 武都—康县—略阳断裂及茶店—勉县断裂在晚更新世曾有过活动, 在全新世活动不明显; 龙门山断裂带东北段平武—青川断裂最后一次活动发生在晚更新世, 表现为右旋走滑的逆断裂, 全新世活动不明显; 岷江断裂和虎牙断裂不但在晚更新世活动强烈, 而且在全新世继续活动; 龙门山北部这个三角地区依然是未来地震活动关注的重点地区.   相似文献   

9.
喀喇昆仑断层与塔什库尔干地震形变带   总被引:8,自引:2,他引:8       下载免费PDF全文
郑剑东 《地震地质》1993,15(2):107-116,T002
喀喇昆仑断层位于我国新疆、西藏和阿富汗、克什米尔之间,是亚洲大陆中部一条巨型的右旋走滑断裂带,长约1000km,呈北西向展布,十分醒目。喀喇昆仑断层和阿尔金断层形成一个巨大的挤出构造,使青藏高原向东运动,对东亚的新构造和地震活动具有重要的控制作用。木吉-塔什库尔干盆地是公格尔山和慕士塔格山西侧一条串珠状断陷盆地带,东西两侧发育系列山前活动断裂,主要表现为正断层。这里曾发生多次强震活动,3条地震形变带(地震断层)已被发现。塔什库尔干断裂带呈北北西走向,是喀喇昆仑断层北部的一条分支  相似文献   

10.
孟连断裂位于云南省西南部与缅甸交界地带,是川滇菱形块体南部一条规模较大的活动断裂带,总体呈NEE向延伸,长约90km,走向N70°E,倾向NW,倾角50°~60°,断裂晚第四纪活动较强烈,以左旋走滑为主,兼具有倾滑特征。通过卫星影像解译和野外调查发现,其断错地貌主要以线性断层崖为主,高度不等,其次为断层谷地、断层沟槽和断层垭口地貌,冲沟及阶地的水平位移多在几十米至几百米之间。在孟连县城西侧开挖的大型探槽中,揭露出多条断层,通过分析剖面和14C测年结果认为,孟连断裂晚第四纪发生过4次古地震事件,除最早一次年代较久远以外,其他3次均发生在全新世中晚期以来,最近一次古地震事件的年代为(1 860±30)~(1 090±30)a B.P.。  相似文献   

11.
On the southeast coast of Fujian and its adjacent area, the NE-trending Changle-Zhao′an fault zone and several NW-trending faults that are genetically related to the former are well developed. With micro-relief analysis, the paper deals with the Quaternary activity of the faults and the tectonic stress field since the late Pleistocene in this region. The results indicate that the micro-relief of the NE-trending Changle-Zhao′an fault zone and the genetically related NW-trending faults is characterized by vertical and horizontal movements since the Quaternary; the faults in the region have undergone two active stages since the Quaternary, i.e. early Quaternary and late Pleistocene; since the late Pleistocene, the movement of the NE-trending faults showed a right-lateral strike-slip, while that of NW-trending faults a left-lateral strike-slip, indicating a NWW-SEE oriented horizontal principal stress of the regional tectonic stress field  相似文献   

12.
通过对构造变形、构造空间展布关系、断面产状变化以及构造应力场等的综合分析研究认为,阿尔金北缘活动断裂带在第四纪内的运动方式经历了由挤压逆掩为主(早更新世—中更新世初期)到左旋走滑兼具挤压逆冲(中更新世中、晚期)直至纯左旋走滑运动(晚更新世—现今)的逐渐转变过程.作用于这种转变,研究区内区域构造应力场的演变大致可以划分为三期,其主压应力轴方向由老至新依次为近南北向、北北东向和北东向.构造应力场和断裂带运动方式的这些变化主要是由于印度板块持续向北推挤导致青藏高原内部次级块体向东滑动、岩石圈物质向东流展而造成的.  相似文献   

13.
阿尔金构造系晚更新世中晚期以来的逆冲活动   总被引:5,自引:1,他引:5       下载免费PDF全文
在阿尔金构造系中,阿尔金走滑断裂具有逆冲分量。文中将阿尔金构造系的逆冲活动分为西、中、东3段描述。西段从阿依耐克至车尔臣河河口,阿尔金南缘断裂具有逆冲活动迹象,在山前发育了规模较小的逆冲断层,有较新的地貌面被错动;中段从车尔臣河河口至拉配泉一带,在阿尔金山北缘发育大规模的逆冲断层,有较新的地貌面被错动;东段从拉配泉至宽滩山,逆冲断层有2种形式,此段阿尔金北缘断裂有逆冲分量,同时在阿尔金山北缘及山前冲洪积扇上发育逆冲断裂。自晚更新世中晚期以来,中段及东段逆冲速率<2mm/a。中段西部江尕拉萨依地区自16kaBP以来逆冲速率约为0.33mm/a,中部米兰桥一带自32kaBP以来的逆冲速率约为1.42mm/a。东段最大的逆冲速率在近中部的团结乡,自约5.31kaBP以来达到约1.81mm/a,向东西两端有减小的趋势,在西部柳城子自约72.36kaBP以来的逆冲速率为0.57mm/a,而东端的红柳沟自约8.99kaBP以来仅为0.05mm/a。团结乡地区约自19kaBP以来,逆冲活动有增强的趋势  相似文献   

14.
根据详细的野外调查和剖面测绘成果,结合区域第四系测年结果等资料,对龙蟠—乔后断裂带桃源段新发现的桃源断裂、刀郭断裂、合江村断裂及已知的龙蟠—乔后断裂等4条主要断裂的晚第四纪活动特征进行研究。成果表明,龙蟠—乔后断裂带桃源段在晚第四纪的活动特征明显,活动强度中等,龙蟠—乔后断裂和合江村断裂属全新世活动断裂,桃源断裂和刀郭断裂属晚更新世断裂;晚更新世以来,龙蟠—乔后断裂和刀郭断裂以左旋走滑运动为主,而桃源断裂和合江村断裂则表现为正断走滑为主。这些断裂的活动性都不同程度地影响着研究区及附近区域的地震风险和构造稳定性。新的调查研究成果为深入认识龙蟠—乔后断裂带桃源段的晚第四纪活动性提供了新的资料,并可为深入理解该区的地震地质特征以及工程建设地震安全性评价等提供基础地质资料。  相似文献   

15.
莱州湾海域郯庐断裂带活断层探测   总被引:21,自引:0,他引:21       下载免费PDF全文
利用浅地层剖面仪对郯庐断裂带莱州湾段进行了活断层探测,发现郯庐断裂带主干断裂在第四纪晚期以来具有明显的活动,继承了晚第三纪以来的主要构造活动特点,仍是这一区域的主导性构造. 西支KL3断裂由多条高角度正断裂组成,最新活动时代为晚更新世晚期至全新世早期,受到一系列错断晚更新世晚期沉积的北东或近东西向断裂的切割;东支龙口断裂由两段右阶斜列的次级断层组成,沿断裂带不但有明显的晚第四纪断错活动,而且还发育北北东向晚第四纪生长褶皱,表现出明显的晚更新世晚期至全新世活动特征. 在山东陆地区也发现了与龙口断裂相对应的安丘——莒县断裂,安丘段由一系列右阶斜列的次级断层组成. 从安丘向北至莱州湾凹陷,郯庐断裂带东支活断层构成了一条右旋单剪变形带,每一个次级活断层段相当于带内理论上次级压剪面,在第四纪晚期以来仍以右旋走滑活动为主要特征.   相似文献   

16.
萧山-球川断裂是浙江地区1条大规模的北东向断裂,在该断裂附近曾发生过多次破坏性地震。本文通过地质调查、电法勘探和探槽开挖等方法,对萧山-球川断裂富阳—建德段第四纪活动性进行了研究。萧山-球川断裂富阳—建德段的遥感影像线性特征清楚,对地貌的控制作用较为明显,对山前的第四系发育有明显影响。通过对断裂露头剖面的分析,认为萧山-球川断裂富阳—建德段活动性质以走滑兼具逆冲为主。通过本次开挖的富阳峙山村探槽,结合ESR年龄测定,判定该断裂在第四纪早、中期有过活动,但未断错上覆中更新统上部地层,其最新活动时代为早、中更新世。  相似文献   

17.
Qilian Shan and Hexi Corridor, located in the north of Tibetan plateau, are the margin of Tibetan plateau's tectonic deformation and pushing. Its internal deformations and activities can greatly conserve the extension process and characteristics of the Plateau. The research of Qilian Shan and Hexi Corridor consequentially plays a significant role in understanding tectonic deformation mechanism of Tibetan plateau. The northern Yumushan Fault, located in the middle of the northern Qilian Shan thrust belt, is a significant component of Qilian Shan thrust belt which divides Yumushan and intramontane basins in Hexi Corridor. Carrying out the research of Yumushan Fault will help explain the kinematics characteristics of the northern Yumushan active fault and its response to the northeastward growth of the Tibetan plateau.Because of limited technology conditions of the time, different research emphases and some other reasons, previous research results differ dramatically. This paper summarizes the last 20 years researches from the perspectives of fault slip rates, paleao-earthquake characteristics and tectonic deformation. Using aerial-photo morphological analysis, field investigation, optical simulated luminescence(OSL)dating of alluvial surfaces and topographic profiles, we calculate the vertical slip rate and strike-slip rate at the typical site in the northern Yumushan Fault, which is(0.55±0.15)mm/a and(0.95±0.11), respectively. On the controversial problems, namely "the Luotuo(Camel)city scarp" and the 180 A.D. Biaoshi earthquake, we use aerial-photo analysis, particular field investigation and typical profile dating. We concluded that "Luotuo city scarp" is the ruin of ancient diversion works rather than the fault scarp of the 180 A.D. Biaoshi earthquake. Combining the topographic profiles of the mountain range with fault characteristics, we believe Yumu Shan is a part of Qilian Shan. The uplift of Yumu Shan is the result of Qilian Shan and Yumu Shan itself pushing northwards. Topographic profile along the crest of the Yumu Shan illustrates the decrease from its center to the tips, which is similar to the vertical slip rates and the height of fault scarp. These show that Yumu Shan is controlled by fault extension and grows laterally and vertically. At present, fault activities are still concentrated near the north foot of Yumu Shan, and the mountain ranges continue to rise since late Cenozoic.  相似文献   

18.
Introduction The Tanlu fault zone, the largest active structure in the eastern region of China, is character-ized by right lateral strike-slip movement with dip-slip component in the Quaternary; it shows great significance for the modern seismicity (FANG et al, 1976; Institute of Geophysics, China Earthquake Administration, 1987; GAO et al, 1980; MA, 1987; LI, 1989; CHAO et al, 1995). The Tanlu fault zone is the boundary between the Jiaoliao block and the North China Plain block of …  相似文献   

19.
The Xiluodu (XLD) reservoir is the second largest reservoir in China and the largest in the Jinsha River basin. The occurrence of two M > 5 earthquakes after reservoir impoundment has aroused great interest among seismologists and plant operators. We comprehensively analyzed the seismicity of the XLD reservoir area using precise earthquake relocation results and focal mechanism solutions and found that the seismicity of this area was weak before impoundment. Following impoundment, earthquake activity increased significantly. The occurrence of M ≥ 3.5 earthquakes within five years of impoundment also appear to be closely related to rapid rises and falls in water level, though this correlation weakened after five years because earthquake activity was far from the reservoir area. Earthquakes in the XLD reservoir area are clustered; near the dam (Area A), small faults are intermittently distributed along the river, while Area B is composed of multiple NW-trending left-lateral strike-slip faults and a thrust fault and Area C is composed of a NW-trending left-lateral strike-slip main fault and a nearly EW-trending right-lateral strike-slip minor fault. The geometries of the deep and the shallow parts of the NW-trending fault differ. Under the action of the NW-trending background stress field, a series of NW-trending left-lateral strike-slip faults and NE-trending thrust faults in critical stress states were dislocated due to the stress caused by reservoir impoundment. The two largest earthquakes in the XLD reservoir area were tectonic earthquakes that were directly triggered by impoundment.  相似文献   

20.
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号